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PREFACE 

A modern mechanical structure must work at high speed and with high 

precision in space and time, in cooperation with other machines and systems. 

All this requires accurate dynamic modelling, for instance, recognizing 

Coriolis and centrifugal forces, strong coupling effects, flexibility of 

links, large angles articulation. This leads to a motion equation which 

must be highly nonlinear to describe the reality. r1oreover, work on the 

manufacturing floor requires coordination between nachines, between each 

machine and a conveyor, and demands robustness of the controllers against 

uncertainty in payload, gravity, external perturbations etc. This requires 

adaptive controllers and system coordination, and perhaps a self organizing 

structure. The machines become complex, strongly nonlinear and strongly 

coupled mechanical systems with many degrees of freedom, controlled by 

sophisticated mathematical programs. The design of such systems needs basic 

research in Control and System Dynamics, as well as in Decision Making 

Theory (Dynamic Games), not only in the use of these disciplines, but in 

their adjustment to the present demand. This in turn generates the need to 

prepare engineering students for the job by the teaching of more sophisti

cated techniques in control and Mechanics than those contained in previous 

curricula. 

On the other hand, all that was mentioned above regarding the design of 

machines applies equally well to other presently designed and used mechan

ical structures or systems. We have the same fundamental problems in active 

control of flexible large space structures (LSS) and high rise building 

structures, as well as in the flight control of air or spacecraft, including 

air traffic control and air combat games. 

v 
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Working on basic methodology in all these directions makes one realize 

how valuable the interface between the applications may be to each of them 

separately. Techniques used to design flexible links in manipulators and 

LSS are presently developed jointly. It is perhaps still not sufficiently 

realized that coordination control of robotic manipulators may be obtained 

by methods used in air combat games, and that such games may be used in 

robot decision making. The investigation of such an interface may result 

in the means to overcome many problems in present design practice. The book 

attempts to give the fundamental background for such investigation. 

As mentioned, the dynamical models in all of the above applications, 

in order to be realistic, must recognize untruncated nonlinearity of the 

acting forces and be robust against uncertainties hidden in modelling and/or 

external perturbations. The study of the interface makes it obvious that 

in order to handle such models, one must seek for methods entirely different 

from those used in classical Control Theory, which approximates reality with 

linearized models. Although it might not be immediately visible from behind 

the Laplace transformation, Control Theory had been born out of Mechanics, 

particularly Nonlinear Mechanics. The latter has been developing quite 

rapidly for the last twenty or thirty years, but this was somehow unnoticed 

by the control theorists. Now, with the applications mentioned, Nonlinear 

Mechanics may no longer be ignored in Control Dynamics, and the demand for 

it is growing rapidly. There is no applied text available which would deal 

with control of fully nonlinear, uncertain mechanical systems. This book 

has been written to fill the gap. 

The thirty years of research work which this author has devoted to the 

subject gives him the advantage of knowing what is needed, but also the 

disadvantage of habitually favoring some of the topics. This bias has 

proved useful, considering the space limitations which must be imposed on 

any text. I hope, however, that the book is a healthy compromise between 

the needs and the bias. 

The first chapter outlines the models of mechanical systems used, the 

second and third introduce the reader to the energy relations and the 

Liapunov design technique applied later. Chapter Four specifies the 

objectives of control and the types of controllers used in the three basic 

directions of study: robotics, spacecraft structures and air games. 

Sufficient conditions, control algorithms and case studies in these three 

directions are covered by Chapters 5, 6 and 7, in terms of control (collis

ion, avoidance and tracking, respectively), while Chapter 8 deals with the 

same problems but subject to conflict. 
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The text has grown up from lecture notes for junior graduate and 

senior undergraduate courses taught at Mechanical Engineering, University 

of Southern California, Los Angeles, in Advanced Mechanics, Analytic 

Methods of Robotics, Control of Robotic Systems, and at University of 

Queensland, Australia, in Control Theory, Systems Dynamics and Robot Theory. 

Apart from natural use in such courses, the book may serve as reference for 

the design of control algorithms for nonlinear systems. 

The author is indebted to Professors M.D. Ardema, A. Blaquiere, 

M.J. Corless, H. Flashner, E.A. Galperin, W.J. Grantham, R.S. Guttalu, 

G. Leitmann, W.E. Schmitendorf, R.J. Stonier and T.L. Vincent for cooper

ation leading to results included in this book, as well as to some of the 

mentioned colleagues for comments improving the text. Thanks are also due 

to my wife Elzbieta Skowronski, and to the graduate students Harvinder 

Singh and Nigel Greenwood for solving some problems and proof-reading, as 

well as to Mrs Marie Stonier for careful and patient typing. 

LOS ANGELES, JANUARY 1989 

J.M. SKOWRONSKI 
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Chapter 1 

MECHANICAL SYSTEMS 

1.1 SIMPLE MECHANICAL SYSTEMS 

It seems both convenient and illustrative to introduce some of our 

later defined notions on simple but typical examples of mechanical systems. 

Perhaps the simplest and, at the same time, most typical mechanical system 

is a single link mathematical (idealized) pendulum discussed in the follow

ing example. 

EXAMPLE 1.1.1. Consider the simple pendulum shown in Fig. 1.1, swinging 

about the base point 0 in the Cartesian plane Oxy, by the angle e (t) , 

for all t;:" to ' where to E JR is an initial time instant. The plane is 

a part of the Cartesian physical coordinates space Oxyz where the position 

of the point-mass m is specified by the current values of x(t) , Y (t) , 

z (t) subject to obvious constraints: z = canst, x 2 + y2 = 9,2. Under 

such constraints only one variable can be independent, and thus we say that 

the system has a single degree of freedom (DOF). It is more convenient to 

choose e (t) as the generalized (lagrangian) coordinate describing such 

DOF, rather than x(t) or y(t), although the choice of either of these 

two is obviously possible. We thus define q (t) ~ e (t), t;:" to The 

point-mass m is considered an object in a point-mass model of a mechanical 

system. In our simple case the model consists of the object concerned with 

the single DOF specified by q(t) . 

The generalized variable q(t) is free of the cartesian constraints 

mentioned but it has its own work limitations in some interval f', of its 
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f LENGTH 

u (t) CONTROL TORQUE 

y mg WEIGHT 

Fig. 1.1 

values. For instance, when the pendulum is suspended from a ceiling which 

is non-penetrable, we must impose 6. : -IT ~ q(t) ~ IT • 

In a symbolic way, we represent the system as a single mass cube railed 

to move in one direction only, generally subject to gravity G , spring or 

elastic (in link) forces K and damping force D, as well as to an external 

input - control force (torque) u, see Fig. 1.2. This representation is well 

known as the schematic diagram of the system structure. The arrows crossing 

the symbols of elastic and damping connections indicate that the corres

ponding forces may be represented by nonlinear functions. The damping 

symbol is shown as a damper open from above if the damping is positive, 

and from below it if is negative. 

~(t ) 

Fig. 1.2 

The point mass subject to weight G is restricted to the vertical 

motion only as shown in Fig. 1.2, modelling the single degree of freedom. 

2 
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For simplicity of exposition, we ignore the elastic force in the link. 

The damping force D is made dependent upon the velocity q(t) tJ dq(t)/dt 

and is specified by the function diqiq, d > 0 to be positive damping. 

Since we ignored elastic forces, the potential force acting upon the mass m 

reduces to gravity, specified by its component mg sin e, where g is the 

earth acceleration. Then the Lagrange equation of motion gives 

(1.1.1) 

With m,£ constant and measured, it is convenient to rewrite (1.1.1) in 

terms of the forces per coefficients of inertia which we call characteristics 

of the forces involved. We obtain 

q + D(q) + TI(q) = u (1.1.2) 

where D(q) ~ d'iqiq/m£2, TI(q) tJ (g/£) sinq and u tJ u/m£2. Introducing 

the force characteristics frees the acceleration term in (1.1.1) from the 

inertia coefficient. For multidimensional systems, such a procedure is 

connected with decoupling the equations inertially (dividing by the matrix 

of inertia), which then makes it possible to apply the results of control 

theory, usually formalized in terms of the normal form of differential 

equations, see later examples. 

The potential energy of the pendulum is then expressed by 

V(q) VO + J TI(q)dq 
q(t) 

(1.1.3) 

with the initial storage of energy VO = V(qo) , where qO = q(t o) , to 0 

being the initial instant of time. The equilibria of the pendulum 

occur at rest positions q 
V(·) , i.e. sinq = 0 

e 
or q 

o coinciding with the extrema of the function 

nr: , n = O,±1,±2, .... As is well known 

from elementary mechanics, the minima correspond to the Dirichlet stable 

equilibria occurring at the downward positions of the pendulum, after each 

full rotation by 2TI. The maxima correspond to Dirichlet unstable equil

ibria occurring at the upwards positions obtained on every half-turn by TI 

from the preceding stable equilibrium. The maximal values of V(·) at these 

positions form the energy thresholds which have to be passed before another 

stable equilibrium is attained, i.e. before the pendulum realizes a rotation. 

Obviously the gravity characteristic TI(q) = (g/£) sinq is a highly 

nonlinear function. It can, however, be expanded as a Taylor or power 

series 

3 
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II(q) r:: q3 5 ] (g/~) r - 3T + ~! - ..• . (1.1.4) 

Since q is bounded for physical reasons, the equilibria which are zeros of 

(1.1.4) become zeros of some polynomial with a number of terms related to 

the number of rotations performed, see Fig. 1.3. 

As there are many cases in engineering design where truncation of the 

series is necessary, if only for computational reasons, it is of interest 

to see when and to which extent such an operation is physically justified. 

LINEAR IT (q.) 
THRESHOLD 

Fig. 1.3 

For q €: [- (TI/4) , (TI/4) J, the linear approximation II (q) = (g/~) q may 

be satisfactory, see Fig. 1.3. However, for larger swing angles, we need 

to include the nonlinear terms in (1.1.4) (the more of them the larger the 

swing angle) • For the pendulum turning upwardS, but not falling down 

again: q = ± TI, we need at least 

II(q) n 1 3 (g/;c) (q - "6 q ) , (1.1.5) 

for the pendulum falling down again: q ±2TI, we need 

II n 1315 (q) = (g/;c) (q - "6 q + TIT q ) , etc. 

Consequently the equation of motion (1.1.2) becomes nonlinear and must be 

treated as such, if we do not want our model to disagree principally with 

the physical reality of the rotating pendulum. The nonlinear terms of the 

force characteristics cannot be truncated. This also means that we mu.st 

recognize the existence of several stable equilibria separated by thresholds. 

with positive damping, these equilibria will attract motion trajectories in 

the phase-space (state space) Oqq from specific regions of attraction, 

see Fig. 1.4, and will in fact be in competition as to their attracting 

role. Each attracting equilibrium (attractor) will have its own (winning) 

4 
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region of attraction. Given the same controller, depending upon where the 

trajectory starts (initial conditions) it will land in a corresponding 

attractor. By truncating the nonlinearities, we ignore all the equilibria 

except the single basic equilibrium at q = 0 and we may be led into a 

false sense of security, assuming that trajectories from everywhere will land 

in that equilibrium. Such a conclusion may be true only in some neighbour

hood of the basic equilibrium (below the thresholds) but a slight change of 

initial conditions beyond this neighbourhood, i.e. beyond a threshold, may 

produce unstable trajectories tending somewhere else than intended. Then 

we may need a power expensive controller to rectify the situation. More

over, the further from the threshold we are, the more costly such a 'con

troller becomes, possibly beyond its saturation value. 

--~--+---~---+--+-+--+-~~--+---±-T-;---~~ 

Fig. 1.4 

Let us have a closer look at the trajectories. In our case it will be 

possible to do it directly, as the equation (1.1.2) with u = 0 is integrable 

in closed form. 

xl {J q, X 2 (J q 

We choose the state variables x l ,x2 

and rewrite (1.1.2) with d = d/m~2 

) 

by substituting 

as 

(1.1.6) 

or in terms of the directional field in the phase-plane (state-plane) Ox l x 2 : 

-(g/~) sinxl - dlx21x2 + u 

x 2 
(1.1. 7) 

For the moment let us free the system from control, i.e. assume u(t) to be 

a given function of time, in particular u (t) = O. Since x 2 = I x 2 1 sign x 2 ' 

we can rewrite (1.1.7) as 

5 
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-2 (g/t) sin xl (1.1.8) 

where the plus sign is used for x 2 > 0, and the minus whenever x 2 < 0 • 

Except for these changes in sign, (1.1.8) is a linear equation in x~ with 

xl as an independent variable. Hence the solutions of (1.1.8) are elemen

tary: 

4gd sin xl 
± 

t(l + 4d 2 ) 
(1.1. 9) 

where C is a constant of integration and where the signs ± are interpreted 

as in (1.1.8). 

The above first integral of (1.1.8) is a curve x 2 (x l ) in the phase-

plane Ox l x 2 of the pendulum, already called the trajectory. A suit-

able choice of the constant C makes the pieces of trajectories (1.1. 9) due 

to the ± sign fit together at the points of intersection with the xl-axis. 

The trajectories are shown in Fig. 1.4. The unstable equilibria correspond 

to saddle points at odd multiples of TI, the stable equilibria correspond 

to foci at even multiples of TI. The trajectories that cross the unstable 

equilibria (energy thresholds) become damped separatrices, i.e. lines 

separating the families of trajectories attracted to a particular stable 

equilibrium. 

The number of full rotations exhibited by the pendulum depends upon the 

initial magnitude of the velocity x2' The greater this initial speed, the 

greater the number of full rotations, provided the system is free. The 

region between the separatrices enclosing the corresponding stable equili

brium is the region of attraction to this equilibrium considered the 

attractor. As mentioned, for the free system, the trajectories from outside 

this region will be attracted to some other attractor, and we may never be 

able to attain the target of a trajectory unless we start from a suitable 

region of attraction. The trajectories from beyond the threshold can also 

become entirely unstable and unbounded. 

Let us now consider the controlled system, i.e. when u(t) , generally 

non-zero, has been determined by a specified control program which is a 

function of the state X I ,X 2 

(1.1.10) 

Between the separatrices, there is little need for a controller to produce 

any inputs in order to lead the pendulum to the corresponding stable 

6 
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equilibrium. However, if the initial values lie between separatrices 

other than these bounding the desired stable equilibrium (see trajectory 

denoted by crosses in Fig. 1.4), i.e. outside the region of attraction to 

the desired equilibrium, an additional force is needed in order for a trajec

tory to pass over the energy threshold, which corresponds to the separatrix to 

be crossed. In terms of the equation (1.1.2) it means to produce the control 

program for u(t) w~ich cancels some (one or more) nonlinear terms of the 

polynomial by which the gravity force is represented, say for instance, 

'. 3 u(t) = -(g/£) (68 1 85 - 120 + ... ) . (1.1.11) 

It cuts off the thresholds or, in physical terms, forces the rotation back 

to the basic region of 8 E [-TI,TI]. It may prove expensive in terms of 

power supply. In fact, it is the more expensive, the more thresholds must 

be cut between the given initial conditions and the region of attraction 

attempted. 

When linearizing the system by the choice of a suitable control, we 

have exactly the above case when forcing the trajectories to the region 

of attraction of the basic equilibrium. Then obviously the cost is the 

greater, the more nonlinear terms (equilibria) we have to cancel. 

The same effect may be obtained in a less costly manner by a gravity 

or spring compensation, for example, such as shown in Fig. 1.5(a) below. 

A counterweight Mg on the radius L adds to M(8) = (g/£) sin 8 an addit

ional M' (8) = (ML/m£) sin (-TI) which, with a suitable choice of M and L, 

holds the link swinging about its upward position instead of downward. 

Moreover, the above is done not by control torque but by structural means. 

This reduces the control torque needed to that generating a small swing 

about the new equilibrium. A very similar effect could have been obtained 

by inserting a spring about the suspension point of the equilibrium, the 

spring supporting the link in the desired position, see Fig. 1.5(b). For 

the linearisation effect, the spring characteristic may be specified, for 

instance, by K(8) = -(kg/£)8 - (g/6£)8 3 + k < 1 , again depending 

upon the number of nonlinear terms we wish to cancel. 

The control or structural cancellation of the nonlinear terms is 

however not. possible when the nonlinearity is a target of our design 

as for instance if we want to produce a system that will aim at achiev

ing a specified equilibrium, say second or third from the basic, i.e. will 

aim at work after a specific number of rotations. The latter case often 

applies in engineering. D 

7 



www.manaraa.com

8 

The gravity or spring compensation mentioned in the above example 

apply generally, even for a system of much higher dimensions. In some 

cases the designer has also an option of nonpotential compensation. He 

may use extra damping - positive by inserting fluid dampers or negative 

by designing self-oscillatory devices. 

GRAVITY 
COMPENSATION 

(aJ 
Fig. 1.5 

SPRING 

(bJ 

As mentioned, the model of Example 1.1.1 was a special simple version 

of the class of mechanical models called point-mass representation, where 

the mass or more generally the inertia of the system is reduced to a finite 

number of material points, each with at most three degrees of freedom (DOF) 

- translations in the three dimensional Cartesian space Oxyz of physical 

coordinates. such masses are considered reduced objects of the system. 

In Example 1.1.1 we had a single object moving with a single DOF. Let us 

consider now some cases with two DOF. 

EXAMPLE 1.1.2. Two simple pendula of Example 1.1.1 are coupled by a spring 

at the given distance from their joint suspension base, see Fig. 1.6. Their 

basic equilibria are attained in the vertical downwards positions of the 

pendula. The system now has two objects, point-masses m] ,m2 ' with posi-
iii 

tions specified by coordinates X ,y ,2 , i = 1,2 measured from their 

corresponding basic equilibria in Oxyz. As the pendula move in the ver-
i i2 i2 2 

tical plane, we have constraints 2 = const, (x) + (y) = £ , and moreover 

the coupling generated constraint yi> 0, i = 1,2, as full rotation is not 

possible. Again generally, the two point-mass modelled object will have 

six DOF (3 + 3), but the constraint relations reduce the DOF of the system 

to two. Similarly as in Example 1.1.1, it is more convenient to choose the 
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Fig. 1.6 

angles of articulation 81,82 to be the generalized (lagrangian) coordin

ates ql,qz for these two DOF rather than any of the Cartesian (physical) 

coordinates chosen from xl"" ,z2 . The latter option is obviously 

possible, but leads to more complicated motion equations following the 

insertion of constraints. The Lagrange equations of motion give the 

following motion equations of the system: 

£. 2" ml ql + dliql iql + ml g£. sin ql - a 2k(q2 -ql) u l ) (1.1.12) 
2" m2 £. q2 + d2iq2i42 + m2g£. sin q2 2 + a k (q2 - ql) u 2 

or' 

ql + Dl (ql) + Gl (ql) + K12 (ql -q2) 

q2 + D2 (q2) + G2 (q2) + K2l (q2 -ql) 
) (1.1.13) 

in terms of the force characteristics: D. (q.) = d. kiq. /m.£.2 for damp-
~ ~ ~ ~ ~ ~ 

ing, Gi (qi) = (g/£.) sin qi 

k>O, i,j=1,2, itj 

for gravity, Kij (qi - qj) = a 2k (qi - qj) , 

for the spring coupling, with K12 = -K2l 

assumed. The spring coupling characteristic is a linear function, with the 
2 

spring coupling coefficient kij / mi £. = k being the same for both inter-

actions: first object on second and conversely. The input characteristics 
~ 2 are obviously represented by ui = u i / mi £., i = 1,2 

The characteristics obtained under the passage from (1.1.12) to 

(1.1.13) are relatively simple functions, since the equations (1.1.12) are 

already dynamically (inertially) decoupled. Normally, such passage would 

have been obtained by mUltiplying the motion equations, resulting from the 

Lagrange format, by an inverse of an inertia matrix, which in general will 

not be diagonal as in (1.1.12), see Section 1.5. 

The schematic diagram corresponding to the system (1.1.13), i.e. to 

the inertially decoupled form, is shown in its general version in Fig. 1.7. 

9 
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Although it is inertially decoupled, it maintains the static couplings of 

both damping and spring forces. Of these only the spring coupling is 

relevant to our case. Again the nonlinearity of the characteristics is 

indicated by the crossing arrows. The point masses move in the vertical 

direction only, as marked. Thus each mass exhibits a single DOF. Apart 

from the coupling connection, each of the masses is connected to the 

external frame of reference (suspended). The latter represents the 

"eigen" characteristics. 

Fig. 1.7 

Generally, the characteristics of a two DOF system may be expressed 

by the following functions of velocities and displacements: 

Di (ql,q2'Cr 1 ,Cr2 ) = Dii(qi'Cri ) + Dij(qi-qj' Cri-<'r j ) 

Ki (ql,q2) = Kii(qi) + Kij(qi -qj) , i,j = 1,2, it- j , 

(1.1.14) 

(1.1.15) 

the first terms with the subscript ii corresponding to the object mi 

itself and also referring to the interaction between the object and the 

environment (reference frame). The terms with the mixed subscripts ij 

correspond to the coupling between the objects, referring to mi acting 

upon mJ" i t- j. In our particular case, as seen above, D" = D" = 0 
l.J J l. 

so there is no coupling in damping, and Kll = K22 = 0 , so there is no 

elastic suspension of objects, with the spring forces reduced to coupling 

10 
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only. As we shall see later in this chapter, the general case of the 

mechanical model includes the kinetic (inertial) coupling as well, i.e. 

the inertial terms in the motion equation will depend, generally, upon all 

acceleration components qi' i = 1,2 . However, in most cases, these 

terms are linear in qi and there is a straightforward method of decoupling 

these equations, see Example 1.1.3. 

The relationship of the force characteristics concerned to the con

figuration variables and (formally) the velocities is indeed static. In 

order to investigate it, we have to put the system at rest, i.e. into its 

equilibrium. The functions represent the capacity of the forces to act, 

and the collection of such functions determines the static organization or 

structure of the system. Given the characteristics,.we know what it is 

that moves and how it may move when it starts, but until solutions to the 

motion equations are found, we will not know how it actually moves. The 
s 

spring Kii extends under load. A certain static extension qi = const , 

measured along the configuration coordinate qi' corresponds to the weight 

mig. Let k i be the load necessary to produce a unit extension. Then 
s s 

Kii = mig = k i qi and qi = mig / k i · The static extension is also the 

equilibrium position of the point mass or cube mi 

Suppose the load changes producing a deflection ± <Sq. from the 
~ 

It makes the total extension equilibrium position defined by 
e s 

qi = qi 

of the spring equal to 
e ± <Sqi some qi = qi EJR. Then the corresponding 

restoring force in the spring is -kiqi Without narrowing generality, 

we may conveniently place the origin of JR at the equilibrium position 

(as in fact is done above) q7 = q~ = 0, yielding q. = ± <Sq. . Obviously 
~ ~ ~ ~ 

the values kiqi represent the capacity of the spring to bear various 

loads mig, i.e. the capacity to attain the goals which may be expected 

from the system element Kii • The function Kii (qi) = -kiqi is the static 

characteristic of the element concerned. Obviously it may be arbitrarily 

nonlinear, this depending upon our design. 

K;J" specified by K .. (q. -q.), 
• ~J ~ J 

The spring coupling elements 
2 

in our case K12 (ql -q2) = -a k(q2 -ql) 

are obtained in exactly the same way as Kii but referring to the relative 

position of the two objects qi - qj They are static characteristics of 

the spring coupling. Again Kij (·) may be arbitrarily nonlinear and give 

the capacity of the system for the action of the spring coupling forces. 

Note that considering the force per coefficient of inertia versus the dis

placement is conventional. For some purposes, just the opposite may be 

more suitable, both Kii and qi being what we shall call system variables. 

The inverse function giving the displacement versus the force/inertia will 
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be later called the co-characteristic. All the above comments may be, 

ex-equo, made with respect to the damping characteristics 0" (.), 0" (.) 
II l:1 

- T - T 
The vectors of the characteristic forces K = (K 1 ,K2 ) , ° = (° 1 ,°2 ) 

together, form the system characteristic, which determines the organization 

or static structure of the system. 

Similarly as in (1.1.3), the potential energy of the system will now 

be expressed by the integral of the sum of the potential force, i.e. spring 

and gravity: 

V(ql ,q2) = VO + 2:~=1 Jq , (t) [Gi (ql ,q2) + Ki (ql ,q2)J dqi 
l 

(1.1.16) 

Obviously the underlying axis of Fig. 1.3 will 

now become an underlying plane Oq[q2 and the potential surface will be 

located in three dimensions, see reference to it later in Chapter 2. 

The generalized coordinates of the system ql,q2 which represent its 

deviation from the equilibrium move in time ql (t), q2(t), t ~ to ' while 

the vector q(t) = (ql (t),q2(t))T describes the instantaneous configura

tion of the system. Thus it is often called a configuration vector and 

ql(t) , q2(t) the configuration variables. The configuration variables 

are independent, but obviously bounded, see Fig. 1.6, thus we shall have a 

bounded set I'Iq C JR 2 such that q (t) E I'Iq , V- t ~ to . The set I'Iq forms 

the configuration envelope while JR 2 is the Configuration Space of the 

system. 

The motion equations corresponding to the full system represented in 

Fig. 1.7 can be written as 

qi + °ii (<Ii,gi) + °ij(qi-qj' gi -gj) + Gi (ql,q2) + Kii (qi)) 

+ K,(q, -q,) u l" i,j = 1,2, i i j 
J l J 

(1.1.17) 

or in more general notation, 

ql' + 0l' (q,~) + G, (q) + K, (q) = u, , 
l l l 

i = 1,2 , (1.1.18) 

which will later be called the symplectic or Newton form of the motion 

equations. We immediately observe that (1.1.13) is a special case of 

(1.1.17) and thus also (1.1.18). Note that this form is inertially decoup

led, the property which will enable it to become transformed in the system 

state equation format, which is a set of first order differential equations 

in normal form. 

12 
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According to Mechanics, the motion is fully described by registering 

its velocities as well as positions. Hence we shall need 

E 11. 
q 

6. the bounded velocity envelope in the tangent space ]R2 at (ql,q2) , to 
q 

form the state description of the system, which will thus be given by the 

t t t -() ( )T 11 ( ..)T d' . sa e vec or x t = x l , ... ,x4 = Ql,q2,ql,q2 ' an w~ll vary dur~ng 

motion in the state work region 11 ~ 11 x 11. E]R4 , which is the state 
Q Q 

space of the system, while x l , ... ,x4 are called the state variables. Then 

the state equations corresponding to (1.1.3) become 

Xl X3 

X2 x 4 
(1.1.19) 

x3 - Dl (x 3) Gl (xl) Kl2 (Xl - x 2) u l 

X4 - D2 (x4) G2 (x2) K21 (x2 - Xl) u 2 

that is, four equations of the first order defined (hopefully) on 11 and 

with unique solutions on this set. o 

EXAMPLE 1.1.3. Let us now double the pendulum of Example 1.1.1, not in 

parallel as in Example 1.1.2, but in series, making the system a double 

pendulum with two DOF, see Fig. 1.8, coupled not only statically by poten

tial forces (this time gravity, not spring) but also dynamically (inertial 

coupling) . The pendulum moves in the Cartesian plane Oxy, with constraints 
2 2 02 

(X 2 -Xl) + (Y 2 -Y l ) = "'2' Zl = Z2 = o. Ignoring the 

spring forces and considering the system subject to viscous damping 

-dliiilii i , i = 1,2, and external input Fl = ulQ,I' the Lagrange equations 

of motion produce the following system of equations: 

2" • 2 • 
(m l +m2)Q, 18 1 + m2Q,1Q,2 82 cos (8 2 - 8 1) - m2Q,1Q,282 s~n (8 2 - 8 1) 

-(m l +m2)Q,lgsin8 1 - dlslls l + ulQ,1 ' 

(1.1. 20) 
2···· ·2 . 

m2Q,2 82 + m2Q,1Q,2 8 1 cos (8 2 - 8 1) + m2Q,1Q,281 s~n (8 2 - 8 1) 

= -m2Q,2gsin82 - dls 2 1s2 . 

It is immediately seen that these motion equations are much more 

complicated than those of the system with two parallel pendula of Example 

1.1.2, where the system had been coupled statically only (gravity, spring). 

13 
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y 

Fig. 1.8 

Here the system is dynamically (inertially) coupled, but since the 

inertia forces are linear in 81,82 we may decouple it by solving the 

equations (1.1.20) for 81,82 to obtain: 

81 = M~I{m2.Q,1 sin (8 2 - 8IH.Q,Jl~ cos (8 2 - 8 1) + .Q,2S~J - disil 81 

+ dl(\IS 2 (.Q,I/.Q,2) cos (8 2 -8 1) - (m l +m2)g.Q,1 sin8 1 

where 

(1.1.21) 

There are simpler methods for inertial decoupling, for instance as shown in 

our next example, the purpose of the above exercise being only to indicate 

that solving for the linearly appearing acceleration is possible though 

complicated. Obviously for any number of DOF higher than two, we would have 

to use matrix solutions. 

The format (1.1.21) enables us to represent the system in terms of the 

schematic diagram in Fig. 1. 7, with ql = 8 1 , q2 = 82 as in Example 1.1.2. D 
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So far we have used the class of Cartesian (physical) coordinate 

models called the point-mass representation. There is an alternative class 

which may be called a multi-body model, in which the interconnected objects 

are interpreted as solid rigid bodies, each with generally six OOF, that 

is, three translations and three rotations. It is a matter of convenience 

which of the clas~, of models we use in the controlling process of a mechan

ical system. In fact, as will be indicated later, the multi-body represen

tation may be turned into an equivalent point-mass model by a suitable 

selection of the point-masses, usually by increasing the number of objects 

of the model in Oxyz with rotations replaced with translations. This, 

however, should not increase the overall dimensionality of the phase or 

state spaces, which matters for computational purposes. 

EXAMPLE 1.1.4. The solid, rigid rod shown in Fig. 1.9 with the mass m is 

suspended on two springs separated by a constant distance r 12 = £1 + £2 ' 

where £1'£2 locate the center of gravity as indicated in Fig. 1.9. The 

rod moves in the vertical plane Oxy with two OOF (translation and rotation) 

when either an initial displacement or a control torque is applied to the 

body. When the actuator and sensor of motions are applied arbitrarily, a 

natural way to choose the independent lagrangian coordinates for the OOF is 

to take ql = Y which is the vertical translation at the point of action 

of the actuator u, a distance £ from the center of gravity, and take 

q2 e which is ,the rotation angle about that point, both marked in Fig. 

1.9. 

As we shall see below, this is only one of at least two possible ways 

of choosing the lagrangian coordinates in this case. 

o 
x 

f, u f2 
~'-~~'---+-'-

---. J'~-=::y-

Fig. 1.9 

15 



www.manaraa.com

Ignoring the damping and assuming the springs linear K .. 
~~ 

for the sake of simplicity, the motion equations become 

mql + ~qz + (k i +k2)ql + (k Z9"Z -k1,Q,I)qZ = u , 

Jqz + m£ql + (kl,Q,i +k2£~)q2 + (k 2£2 -kl£l)ql u£, 

1,2, 

) (1.1.22) 

where J is the moment of inertia concerned. The system obviously possesses 

both the static and the kinetic (inertial) coupling terms. The inertial 

decoupling can be obtained, as mentioned before, by multiplying the equa

tions by the inverse of the inertia matrix M immediately visible from the 

equations (1.1.22). In our particular simple case, the procedure may be 

realized by calculating q2 from the second equation and substituting the 

result into the first, thus obtaining the equation for qi in an inertially 

decoupled format. A similar calculation yields such an equation for ~2. 

Even in this simple two OOF case, the computation is, however, complicated. 

It can be totally avoided, provided the kinetic energy can be written as a 

sum of squares of the lagrangian velocities, which means that the inertia 

matrix becomes diagonal. This may be achieved in a simple way by actuating 

and sensing the motion at CG, thus obtaining £ = o. Then (1.1.22) 

become 

mql + (k i +kZ)ql + (kz£z -kl,Q,l)qz = u , 

Jq2 + (kl£~ +k2,Q,~)qZ + (kz£z -kl£l)ql 0, 
) (1.1.23) 

which expressed in terms of characteristics, i.e. subdivided by m,J 

respectively, can be immediately written in the symplectic form (1.1.18). 

Then, choosing the states as in Example 1.1.2, we obtain the state format 

(1.1.19) . 

The static - spring decoupling is attained, when the potential energy 

function V(ql,qZ) can be made a sum of squares of the lagrangian coordin

ates (which is typical for the linear systems) and then if the restoring 

forces (in our example, the spring) may be weighted by their distances to 

C.G., in particular kl£1 = k 2£2 . 

The choice of lagrangian variables which satisfy both inertial and 

static spring decoupling produces the so called normaZ or principaZ 

coordinates essential for the systems concerned. They totally decouple the 

linear equations of motion. 

An equivalent model of the rod is obtained in terms of the two point

masses mi and m2 shown in Fig. 1.10. They are interconnected by a mass-
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less rigid frame at a constant distance r l2 with the actuators of motion 

acting upon the two masses by controls u l ,U 2 and the configuration 

variables chosen as vertical translations of each of the masses from their 

equilibrium qi = Yi' i = 1,2. To compare with the previous type 

actuation u, the controls U I ,u2 may be weighted by the size and location 

This immediately gives the motion equations in the inertially 

decoupled form corresponding to (1.1.23), which makes it easier to rewrite 

these equations in the s>~plectic forMat of (1.1.17). o 

Fig. 1.10 

We hope that the examples of this introductory section give an 

intuitive feeling of the kind of structures discussed in this book. We 

proceed now to a more general and systematic description of the systems 

concerned. 

1.2 WHAT MOVES AND HOW? 

Klir rl~ lists 25 substantially different definitions of the system 

net in the contemporary technical literature, thus the choice is ours but 

rather difficult. Barnett [lJ seems to be close enough to the natural 

definition when, quoted loosely, he says that a system is a collection of 

formally organized objects related by interactions which produce various 

outputs in response to different inputs, the latter generated by specified 

external and/or internal programs. Still, at least until some of the 

notions of this definition are given a definite meaning for a specified 

purpose, the word "system" as well as the other terms involved in the 

quotation are best left to be understood colloquially. 

In mechanical interpretation, the objects will mean material elements 

(substructures and structures) acted upon and interacting via forces which 

generate motion. The external, or external and internal, forces that are 

programmed produce control inputs. The interacting forces may come with 

the type of substructures involved or may also be designed to suit a 
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specific purpose. In the latter case, they will be a subject of design 

synthesis. The design synthesis ought not to be confused with the optimal 

control synthesis, which is simply a feedback control. Control and design 

synthesis can supplement each other, as illustrated in Example 1.1.1, see 

Fig. 1.5. In fact, for mechanical systems, there cannot be any sharp 

division between these two procedures. 

Investigating the control problems of mechanical systems, it is logical 

and convenient to separate three sets of questions: 

(i) What is moving, 

(ii) how it may move under given forces, and 

(iii) what design or control to use in order to achieve a desired 

motion? 

In terms of Mechanics, the questions of (ii) refer to the Second Problem of 

Mechanics: given forces, find motion, while the questions of (iii) refer 

to the First Problem: given motion, find the acting forces. 

Although our final task is to obtain answers to (iii), it obviously 

cannot be done without answering (i) and (ii). To investigate what is 

moving, it is best to look at the mechanical structures and their inter

acting forces at rest, i.e. at an equilibrium state. Thus the natural set 

up for investigating the question (il is the static study of objects and 

force characteristics, which interrelate the objects. The collection of 

both objects and characteristics gives the system its organization or static 

structure and this is what will, in this text, form the system. The system 

will then be put into motion by inputs and controls. Since the objects may, 

under specific interpretation, be considered a type of force characteristics 

("eigen" interactions, see Skowronski [32J), like those defined by kinetic 

or "fictitious" forces: inertia, gyro, Coriolis, ... , etc., we may think of 

the organization as of a collection of force characteristics alone. Then 

the characteristics have the system-theoretic-meaning of a class of reflex

ive relations that define the system, see again Skowronski [32J. For our 

purpose, however, separating the objects from other static characteristics 

is convenient and more instructive. 

A description of the organization is considered a structural study. 

It must be supported by investigating the properties of materials concerned, 

most often in terms of specific r~eological models, see Section 1.5. For 

instance, flexibility of links, and viscous or dry friction damping in 

connecting joints as well as slip, other boundary shear effects on matting 

surfaces and, in general, negative damping all give structural character-
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istics, while internal damping, internal crystal sliding effect, etc. are 

specifically material in character. They must be either included in the 

structural interactions or made into a separate characteristic. Whatever 

is the case, both the structural and material features must be represented 

in the physical models of mechanical systems which we use for the struc

tural study. 

A physical model is a mathematical description of a real structure in 

the Cartesian three dimensional physical Coordinates Space Oxyz and thus 

it is also called a Cartesian Model. The space Oxyz is considered inertial, 

unless separate notation OXYZ is introduced for the latter. The Cartesian 

model forms the bridge between the real structure and the corresponding 

motion equations. The format of the model depends upon the problem and the 

aim of intended investigations, both structural (static) and kinetic. 

With the present technological demands on structures to work at high 

speed, under heavy payloads, in difficult,uncertain conditions, and yet with 

high precision, the designer must look at the mechanical structure as on a 

complicated machine. Consequently the investigator and thus also the 

modeller must make the model robust against uncertainties in system para

meters as well as against errors, both in modelling and design. At the same 

time, the model must be complex enough to accommodate all the options of the 

designer within each class of problems and design objectives to make the 

study useful for solving such problems. The latter may also include chang

ing the design choice, when the system is scheduled for different operations, 

for instance in flexible manufacturing. Consequently the size of the class 

of problems concerned depends in turn on the variety of applications we like 

to embrace by the model. This specifies the needed degree of abstraction of 

the model. The more general the model is, the wider its applications and 

the better its robustness against modelling errors, but the less concrete 

information for the designer may be obtained by using it. 

Having accepted some degree of the trade-off, we must admit that every 

model will be somehow idealized, although idealization does not mean sim

plification. Rather it means the selection of features essential to the 

aim of study. For instance, a continuous medium model may be redundant for 

modelling an aircraft or a rocket when investigating their trajectories but 

not for the aeroelasticity study. In the first case, the reduction of OOF 

in the point-mass representation may mean already simplifying. Indeed, 

simplification is usually done after a type of the model has been selected 

and mathematical difficulties arise when solving its motion equations, cf. 

Erdman-Sandor [lJ. Linearization of models is here a typical example. 
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Needless to say that giving undue preference to mathematical aspects against 

physical requirements is dangerous in modelling and later in control, see 

Kosut et al [lJ, Belytschko-Hughes [lJ. 

As the reader might have observed, in spite of the fact that the aim 

of our investigation is usually very precisely posed, the modelling proced

ure is still very much an art of the designer. Nevertheless, he has a 

considerable help from the abundant literature on the topic. Modelling is 

not our subject here and thus in this book we could give only a very short 

account of it. The remaining sections of this chapter describe the models 

needed in this book. Moreover, below there is a selected list of review 

works which successively bring the description and study of the modelling 

methods almost up-to-date: Myklestad [lJ, Skowronski [10,12,20J, Koenig

Tokad-Kesavan [lJ, Lowen-Jandrasits [lJ, Erdman-Sandor [lJ, Likins [1,2J, 

Hooker-Margulies [lJ, Hooker [1,2J, Ho [lJ, Wittenberg [lJ, Hughes [lJ, 

Jerkowsky [lJ, Huston [lJ, and relatively recent books edited by Magnus [lJ 

and Atluri-Amos [lJ, Brogan [lJ, Frederick [lJ, Robertson-Schwertassek [lJ. 

Once the model is selected and the number of DOF established, we trans

form the model from Oxyz to the Configuration Space of lagrangian coordin

ates and into the format of the schematic diagram illustrated in Fig. 1.7 

for the case study concerned. Such a transfer may be direct, as in this 

text, or indirect through some intermediate variables, see Simo - Vu QUoc [1 J. 

We then call the new format the Generalized or Lagrangian Model. The 

equations of motion transformed from Oxyz to the Configuration Space will 

have the simplectic form illustrated by (1.1.17) in Example 1.1.2. 

From this point on, our study is kinetic. with given forces as well 

as controls it answers the type of questions (ii): How the system may 

move under given forces. It is the discipline of Kinetic Analysis which 

reveals the options for the motions, thus giving the background for the 

choice of designing the system and its control programs. Quite naturally, 

it must rely heavily upon the results obtained in the theory of differential 

equations, both ordinary and partial, usually in the normal state format, 

see Examples 1.1.3 and 1.1.4, with the characteristics becoming right hand 

sides of such equations and with solutions describing the motion. As we 

do not allow truncation of the nonlinearity in the functions of force 

characteristics, the equations must be nonlinear, in fact accommodating an 

arbitrary nonlinearity. 

The theory of nonlinear differential equations, together with its more 

applied part, Nonlinear Mechanics, has a long and well established tradition 
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dating from before the turn of this century, beginning with the works by 

Poincare [1,2J, Hadamard [lJ, Bendixon [lJ, Liapunov [lJ, Van der Pol flJ, 

Lienard [lJ, Duffing [lJ, through the mathematical theory of dynamical 

systems formalized by Birkhoff [1,2,3J and through the further development 

of Nonlinear Mechanics, right after the Second World War, in at least 

several main research centers in Russia, United States, Italy, Poland and 

the United Kingdom. 

The list of leading names is long and we can only quote a few repre

senting schools of thought, like Andronov, Chetaiev, Stepanov, Nemitzky, 

Markov, Alexandrov, Biebutov, Barbashin, Krasnoselsky, Krassovski, Krylov, 

Bogolubov, Mitropolsky in Russia; Timoshenko, Den Hartog, Klotter, Minorsky, 

Smith with the support of the Lefschetz school in Topological Dynamics: 

Antosiewicz, La Salle, Bellman, Cesari, Seibert, all in the United States; 

then Levi-Civita, Sansone, Graffi, Caciopolli, Conti, Szego in Italy; 

Wazewski, Pliss, Bielecki, Albrecht, Opial in Poland; and Cartwright, Little

wood, Whittacker, Cherry in England. The basic works of the above centers 

are listed in our References under the cited names. A considerable number of 

monographs or reviews discussing these works appeared at the time or slightly 

later, see Nemitzky-Stepanov [lJ, Nemitzky [lJ, Krassovski [lJ, Stocker [lJ, Den 

Hartog [lJ, Synge [lJ, Minorsky [2J, Kauderer f1], Sansone-Conti [1], Antosiewicz 

[1 J, Zubov [l, 2 J, Bulgakov [l J, Andronov-Vi tt-Chaikin [1], and later Bhatia

szego [lJ, Blaquiere [lJ, Barbashin [lJ, Lefschetz [lJ, La Salle -Lefschetz 

[1], Cesari [1], Reissig-Sansone-Conti [1], Pliss [lJ, Hajek [lJ, Struble 

[1 J, Hayashi [1 J, Yo'shizawa [1], Lanczos [1 J, Ziemba [1], Skowronski [12,14, 

20J, Starzhinskii [lJ, Rouche-Habets-Laloy [lJ, and a few others. 

It may seem that the results reviewed and described in these works should 

now have only a historic value. However, at closer inspection, it is not the 

case. Much of this material remains valid to date, and in some directions 

not much more research has been done since these books were written. We use 

a considerable amount of these results in this text. A decade or two later, 

in the 70's, two popular sidelines appeared on the horizon of Nonlinear 

Mechanics: Dynamical Systems on Differentiable Manifolds, centered in the 

Uni ted States and pioneered by Abraham [l, 2 J, Markus [l J, Ni tecki [1 J and Smale 

[1,2J; and the Catastrophe Theory originated by Thorn [lJ and the Warwick 

Center, see Zeemann [1 J, and for review Gilmore [1 J and Zeemann [2 J. Then the 

last decade brought in a marked intensification of the study on bifurcation 

of parameters which began a long time ago with works by Abraham [lJ, 

Andronov-Leontovich [lJ, Andronov-Vitt-Chaikin [lJ and Minorsky [lJ, see 

the recent review by Chow-Hale [lJ, and which branched, starting with 
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Lorenz [lJ, into the present explosion of works on the problems with chaos. 

On the latter topic, we can quote only some basic monographs, like Irvin 

[lJ, Sparrow [lJ, Thompson-Stewart [lJ, Moon [lJ, Guckenheimer-Holmes [lJ, 

Devaney [lJ, Lichtenberg-Lieberman [lJ, and recently Seydel [lJ, many of 

them based on the recent numerical and experimental work of Ueda-Akamatsu

Hayashi [lJ and Ueda [1,2J. 

The above obviously give a very rough picture of the main research 

avenues in the subject. We shall return to this topic later, in a selec

tive way, when needed. 

The structural studies and the kinetic analysis give the preparatory 

background for answering our questions in (iii), i.e. how to design the 

system forees, both interacting (internal) and control (input), in order to 

obtain in response a desired motion of the system. The above problem is 

the subject of this book, thus we leave the discussion on it, including the 

review of the past and present results, to the next chapters. The only 

comment which we make in closing this section is that these problems refer 

to both eontrol, for which we must design programs, and to kine tie synthesis 

which requires design of force characteristics, and that these two ways of 

generating the desired motion are complementary, as shown in Example 1.1.1. 

1.3 THE POINT-MASS CARTESIAN MODEL 

In the last section we stated that the main features of the physical 

model are selected due to the aim of study and that, in particular for some 

cases, a continuous medium model may be redundant. Indeed, the first ques

tion asked in modelling is whether the system substructures are rigid or 

flexible bodies, or perhaps a mixture of both (a hybrid system), cf. Leipholz [1], 

Meirovitch-QUinn [IJ. In the first case, the model is immediately reducible 

either to the point~ass model or to a multi-body model. In the second case 

we face another question, whether the model should be eontinuous or diserete. 

In fact, there is a problem whether there is such a thing at all as a system 

with an infinite number of DOF, see Hughes [2J. Indeed, between the con

tinuous dislocation of the point-masses (distributed parameters) and their 

discrete distribution, there is no qualitative difference as far as the 

modelled physical reality is concerned. Both involve a similar phenomeno

logical approach, as has been known since Livesley [IJ. The difference is 

rather quantitative, referring to the question of how many discretely dis

tributed masses we may technically consider in order to secure the objective 
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of our investigation and/or design. Studying the hybrid system, may we 

perhaps ignore the dynamics which lends itself to continuous medium modelling 

(infinite DOF), if the frequency of motion of such a flexible part of the 

structure is significantly higher than that of the lumped part? We deal 

then with the so called fast dynamics in the flexible substructures. Incid

entally, it is not an easy task to estimate how "fast" the dynamics should 

be to become ignorable, see Corless-Leitmann-Ryan [2J, Corless [2J. We 

shall return to this problem in Chapter 7. 

The above question may also lead to a specific degree of concentration 

of the discrete point-masses into larger lumped masses or bodies forming 

substructures, see Sadler-Sandor [lJ and Sadler [lJ. On the other hand, 

the usefulness of the model, at least for the initial stages of design, 

tends to increase with its simplicity. Moreover, the model that attempts 

to simulate too many details quite often cannot answer many questions rela

ted to the principal objective of design. Fig. 1.11 illustrates the point 

by presenting a set of vertical milling machine models, in the form of the 

so called "augmented bodies", see Liegeois-Khalil-Dumas-Renaud [lJ and 

Hooker-Margulies [lJ, which gets more detailed modelling along successive 

steps of the design procedure. Selecting such augmentation belongs to 

practical case-design techniques. Control Theory considers already well 

specified models, but it is useful to know what arguments have been used 

for specifying a particular case, if only to accommodate them in the 

control investigation. 

STRUCTURE 

MODELS 

Fig. 1.11 
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Investigating the vibrations of an automobile, see Fig. 1.12, we may 

for instance disregard the masses of axles and tires, the chassis can be 

regarded as a rigid beam supported by a flexible foundation. In some cases 

even this simple model can be further simplified. Reduction in coupling may 

illustrate the case. If the stiffness ratio for both front and rear axle is 

approximately inverse proportional to the distance of the gravity center of 

the two axles, then the vertical vibrations of the chassis is independent 

of its longitudinal angular vibration, see Example 1.1.2. In view of the 

symmetry of the structure relative to the longitudinal axis, perpendicular 

angular vibrations of the chassis seem to be independent of the vibrations 

in the longitudinal plane. If the mass of the axles is small as compared 

to the mass of the chassis or the rigidity of the foundation (absorbers) 

less than that of the tires, then the vibration of the axle can be regarded 

as independent of the motion of the chassis. We can notice this, for 

instance, when driving a car at high speed on roads with an unpleasant sur

face. The small amplitude and higher frequency of the motion of the axles 

do not disturb the fluent motion of the chassis. Here again, we may 

apply the mentioned augmented body modelling, introducing successive ver

sions of partitioning of the whole body into a hierarchy of subsystems, 

as seen from Fig. 1.12. 

SEAT 
BACK 
FRICTIONS 

I ~--------_ CHASSIS 

l ~--.- ~--l 
-:~<~SMiSSION--- __ .-J 

FRONT FRONT REAR 
SPRINGS SHOCK ABSORBERS SHOCK ABSORBERr:S':c::-'-~~-,--, 

Fig. 1.12 

Quite often the problem dictates a selection of some substructure only. 

Dealing, for instance, with vibrations of a transmission, we may choose 

shafts with gears as the complete system, excluding connections with the 

chassis etc. If,we want to investigate shimmy vibrations in the wheels, 

for independent wheels, the wheel assembly including suspension (absorbers 

etc.) may suffice. A similar case applies to the machining process with 

the self-excited vibration of a tool investigated. We may and usually do 
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isolate the tool assembly blending the rest into an unspecified environment. 

The literature on lumped mass models is as old as Mechanics, and thus 

classical and too vast to be even quoted. The interested reader may look 

for instance into any texts on modelling methods quoted in Section 1.2. 

From our viewpoint it may be useful to browse through Koenig-Tokad-Kesavan 

[lJ, Wittenberg [lJ, Magnus [2,3J, Meirovitch [lJ, Hagedorn [lJ and Skow

ronski [32J. There obviously is a large and significant literature on 

discretisation of either the flexible or hybrid structures, we shall briefly 

refer to it at the opening of Section 1.8. 

Granted that we agree on the discrete model, here again are the two 

options mentioned already: either the point-mass model with objects 

possessing three OOF each (translations) or the multi-body model, with 

objects being rigid bodies, in general of six OOF each (translations and 

rotations). In this section we introduce the point-mass model, leaving its 

multi-body counterpart to Section 1.4. As mentioned, modelling is not our 

subject (see Section 1.2), thus the system introduced will be heavily biased 

towards our further control goals, without pretending to general excellence. 

The standard point-mass model is based on the traditional set of 

particles of classical Mechanics located in Oxyz. In fact it is a natural 

system-theoretic interpretation of such a set, and as such has been used 

for many years in practically all case studies where reduction to point

masses is feasible. The description produced below is a modification of 

the model introduced in the 1960's by Skowronski-Ziemba [3,6J, Skowronski 

[10,12,14,20J, Muszynska [lJ and Jewusiak-Bigley [lJ. We see the model as 

a three dimensional mechanical network shown in Fig. 1.13, with M vertices 

mi , i = 1, ... ,M, interconnected by branches, each vertex connected with 

all the others, and with an additional vertex Illoo considered the reference. 

The M vertices represent the objects of the system, in this case point

masses, allowed to translate but not rotate (3 OOF each), and the branches 

represent interactions within the system, specified by the force character

istics. The reference vertex IIloo models the non-structural environment and 

the branches connecting it with each of the M vertices :::: objects, model 

external forces determined by input programs. The vertex Illoo is not covered 

by the system physical interpretation and its connections with the system 

are of a different, often non-structural, nature, hence they are indicated 

in Fig. 1.13 by dashed lines. What belongs to moo is relative to our aim 

of study in particular cases of investigation for which the model has been 

designed. 
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Fig. 1.13 

The number of masses mi may be very small or infinite, depending upon 

the aim of our study and acceptability of a given approximation. The model 

may be deformed and/or moving with the point-masses moving relatively to each 

other and Oxyz, see Skowronski-Ziemba r 3 J, Frackiewicz [IJ. However, 

no mechanical system moves in the air, unsuspended. To model such a 

suspension, we may have two options. Assume some, in general all, of 

the vertices to be suspension points somehow attached to the stpuctupal 

enviponment of the system, see mass mj in Fig. 1.13, or alternatively 

introduce for each of the objects, that is, point-masses, a number of sus

pension points attached to the structural environment and connected to the 

point-mass concerned by special suspension characteristics, see mass m2 

in Fig. 1.13. The choice between these two versions depends on the con

venience in design. The second version is particularly useful when we need 

the inertial representation of the suspension to be distinctively separate 

from the rest of the system, like for instance in the case of wheels in a 

vehicle. In general, however, the second version is easily reduced to the 

first by assuming the structural environment a part of the structure, that 

is, the suspension point-masses included in the number M with some of the 

interconnections missing. 

Whichever version is used, the suspension point-masses are restricted 

by constraints, with some of them resting and/or some moving along pre

scribed surfaces or lines in Oxyz. The constraints are defined by 

constraint equations imposed upon the coordinates of these masses in Oxyz 

Then obviously the masses lose some of their DOF. In general, the con

straints may also move, forcing a change in the motion of the system. 
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Replacing the constraints by reaction forces, as it is classical in 

Mechanics, we are making them part of IIIoo with suspension characteristics 

serving as an input, provided the motion of the constraints is programmed. 

The branches between the vertices of the network will generally be 

multiple, owing to various types of interactions, each specified by a 

function. Some will be the neigen" interactions defining the object itself 

(inertia, or mass, or weight), see Fig. 1.14(a). Basically we divide the 

interactions into two groups: structural and material. A rather typical 

representation is illustrated in Fig. 1.14(b) generalizing the known Voigt

type phenomenological model by parallel connections of the massless non

linear spring A representing the potential restitutive forces, two nonlinear 

viscous dampers: positive B and negative C, the symbolic mark D of the 

interior slidings in the material depending on displacement, and E the dry 

friction, damping. Using the symbol "_n for series and "I" for parallel 

ordering, the connection A/B-D is material, the connection C/E is struc

tural. The material connection is that used for an elastoplastic solid body 

rheological model, see Reiner [IJ. Both the dry friction and the negative 

viscous damping in the structural connection may appear when self-sustained 

oscillations are observed in the system (cf. flutter, shimmy). The above 

example ignores many features like the memory of material, retardation of 

the acting forces, temperature, change of mass or inertia, etc. We shall 

return to the discussion on the interactions later, calling them character-

istics. The characteristics have physical meaning of force per inertia 

rather than directly that of force. However, as long as the mass remains 

constant, the difference is only with regard to scale and may be ignored 

in qualitative investigation. 

EIGEN'INTERACTlON' 

INTERACTION 

(aJ (bJ 

Fig. 1.14 
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Let xi' Y i ' Z i be coordinates of mi' We introduce the standard 

simplifying transformation x. = rm-: x. , 
~ ~ ~ 

y. = rm-:y., z. = rm-:z. 
~ ~ ~ ~ ~ ~ 

and con-

sider x.,y.,z. the components in Oxyz 
. th ~ ~ ~ 
~ vertex of our network. 

of the radius vector roi of the 

For the corresponding vectors of the suspension 

points of the jth object, if introduced, we shall have the notation of 

riV' V = 1, ... ,£<00, with components XiV'Yiv'Ziv' Then we make the 

system move in time t, t;o: to ' with to E R the initial instant, whence 

roj , i'jV become functions of time roi (t) , riV(t), and so do their com

ponents. Moreover, let d ik = const be the distance between two vertices 

i and k in the undeformed state, at rest. The displacement of these 

vertices during motion will then be determined by Odik ~ rik(t) - d ik ' 
222 2 

where r ik = (Xi - Xk ) + (y i - Yk ) + (z i - Zk) is the distance between 

these points at the instant t. 

m .• 
~ 

consider now the forces applied upon each of the point-masses 

Without narrowing the applicability of our model, we can split them into 

the following classes: 

Potential forces: Fik(rik), PiV(i'iV)' energy conservative, representing 

gravity and spring forces; 

Damping forces: Dik(rik,fik)' DiV(riV'~iV)' energy dissipative (positive 

damping) or accumulative (negative damping); 

Input forces: r i (roi,ioi,ui) , with u i (t) a control variable produced at 

the vertex i by an actuator attached there; 

External perturbation: acting upon m .• 
~ 

The reader is invited to look for closer discussion on the shapes of 

the force functions in Benedict-Tesar [lJ, Skowronski-Ziemba [3J and Skow

ronski [10,12,15J. Then the Newtonian format of the motion equations of 

the model becomes: 

x. 
~ 

(Xi -Xk ) 

Irik l 

i '" 1, ••• ,M , 

(x. -x ) 
~ V 

Ir. I 
JV 

(1.3.1) 

and identically for the coordinates Yi'Zi' The motion is then determined 
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by the equations (1.3.1) applied to xi,yi,zi and the equations of the 

suspension constraints. 

Examples 1.1.1 -1.1.4 give a very good illustration of the point-mass 

models. Derivation of the motion equations (1.3.1) is left to the reader. 

We may also illustrate our case with the following example. 

EXAMPLE 1.3.1. The typical flight dynamics model of an aircraft is a 

point-mass type with the lumped mass centered at CG. with the geometry 

shown in Fig. 1.15 the Cartesian motion equations (1.3.1) become 

x V cos y cos X 

if V cos y sin X 

h V sin y 
(1.3.2) 

V g (T - D) IW - g sin y 

X gL sin 8 I Wv cos y 

y gL cos 8 I Wv cos y Iv 

where T = T(n,h,v) is the thrust, D = D(h,v,a) is the drag and 

L = L(h,v,a) is the lift force, with the control parameters: angle of 

attack a, bank angle 8, and throttle coefficient n. The weight W is 

assumed constant, and the thrust is assumed aligned with the velocity 

vector V. The earth is taken to be flat, non-rotating and producing con

stant gravitational attraction. 

The first three equations in (1.3.2) describe the kinematics of the 

aircraft, while the last three refer to its dynamics. 

L 

Fig. 1.15 
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The control variables influence the dynamics only, the kinematics 

follow from such action. When the aircraft is considered kinematically 

only (forces ignored), the controls appear in the first three equations. 

1.4 THE MULTI-BODY CARTESIAN MODEL 

Let us augment the point-masses of the network in Section 1.3 to M' 

rigid bodies Bl, ••• ,BM' interconnected by the branches, still each with 

all the others, in order to provide the complete set of options for the 

designer. The branches are now reduced to what will be called hinges 

Hl, ••• ,HM' between the bodies, see Fig. 1.16, understood rather generally, 

i.e. in such a way that with a suitable choice of succession by the designer, 

each of the interconnected bodies is capable of three translations and three 

rotations about the hinge that joints it with its predecessor. This 

suggests that the designer will choose a single tree or several trees (no 

closed loops). Compare, for instance, the model of a car in Section 1.2 

with wheels and suspensions branching out of a chassis. In fact, it can be 

shown that if a network is not a tree (has closed loops) then it can be 

equivalently made into one, by cutting any of the hinges of any of the loops, 

see Jerkowsky [lJ. It is thus traditionally assumed that a multi-body model 

is a collection of trees, cf. Ho-Herbert [lJ, Vu Quoc-Simo [lJ, Ibrahim-Modi 

[1 J. When some Bl is directly connected to the rest of the bodies, we have 

a cluster tree; when bodies are connected in series, we have a chain tree. 

These are the two extremes. In Fig. 1.17 they are marked by the dashed and 

full lines respectively. The shape of any other substructure falls between 

these two types. 

Once the designer made his choice, the model is obviously fixed. It 

must be both fixed and "well designed" before we may proceed to a further 

HO 

Fig. 1.16 
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-t.'i1r---CHAIN 1 

CHAIN 2 

Fig. 1.17 

study of selecting suitable motion controllers. By "well designed" we 

mean not only a definite selection of the tree, but also a specification 

which of the physical features are expressed by the characteristics and 

how. 

On the other hand, in order to secure the freedom of the all-option 

choice for the designer, the model must consist of all the possible trees 

growing up from a given main body Bl, as to which in turn the designer must 

also have a free choice. Thus the model consists of all possible trees that 

can be selected in the network. 

Then the information as to which tree has been selected and how it is 

interconnected in the particular case investigation is stored in the so 

called struc-(;w>al matY'ix S which specifies both the geometry and the organ

ization of the network. The matrix is defined by S" = 1 when there is the 
l.J 

connection B, -+ B,; S" = -1 when the connection is reverse; BJ' -+ Bl.' , 
1. J l.J 

and S" = 0 when there is no connection. There is considerable literature 
l.J 

on forming such matrices and incorporating them in the motion equations to 

follow. As the latter is not of our concern in this text, we restrict our

selves to referring the reader to a good review on the topic in Coiffet [lJ. 
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In designing our model, we refer to the Cartesian space Oxyz as an 

inertial frame, cf. Example 1.1.4. Moreover, we establish the origin 0 as 

the first hinge HO joining some Bl either to a suspension body or directly 

to the environment. The body Bl with the mass mj has the body coordinate 

system OjXjyjZj fixed at the next hinge HI to the body B2, with the axis 

Oz along the line joining hinges HO and HI Obviously the location of 

OJ is conventional and we could pose it anywhere in Bl. Positioning it in 

CG of Bl will decouple the system dynamically, see Example 1.1.4. For our 

general all-options case, we do not do the latter, and pose OJ at HI. The 

same geometry and kinematics refers to B2 with respect to Bl, and all 

subsequent pairs. The body coordinates OjXjYjZj translate and rotate with 

respect to Oxyz modelling the motion of Bl. For instance, if Bl rotates 

only, say about the horizontal axis Oy, as shown in Fig. 1.18, we have its 

current position and velocity specified by 

x (t) r 0 j cos 8 (t) , x(t) -r Oj 8(t) sin 8(t) , 

1 
y (t) - o , !i(t) - o , (1.4.1) 

Z (t) r 0 j sin 8(t) , z (t) r Oj 8(t) cos 8 (t) 

The distance r Oj between the hinges is kept constant as there is no 

translation. The reader may immediately write the corresponding express

ions for a rotating B2, having in mind the following feature which refers 

to all successive bodies in the tree. 

:x: 

y 

Fig. 1.18 
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While Bl may obviously be referenced only to Oxyz, the position and 

orientation of each next Bi, i > 1, may be referenced either directly to 

Oxyz, or relative to its predecessor o .X .y .z ., j = i-I. 
J J J J 

Continuing our example of Fig. 1.18, let us assume that B2 translates 

only, say along its own axis OZI which lies in Oxy. Then its direct 

reference to Oxyz is expressed by 

x(t) r 02 (t) cos 8(t) , 

1 
y(t) - o , 

z(t) r 02 (t) sin 8 (t) , 

(1.4.2) 

and 

x(t) I:02 (t) cos 8(t) -r02 (t) 8(t) sin 8(t) , 

1 
y(t) - o , 

z(t) I: 02 (t) sin 8(t) + r 02 (t) 8(t) cos 8 (t) , 

(1.4.3) 

while the relative reference to °lXlYlZl is expressed by 

Xl (t) - 0 Yl (t) - 0 Zl (t) r 02 (t) - ro 1 ) 
Xl (t) - 0 Yl (t) - 0 Zl (t) r 02 (t) 

(1.4.4) 

In order to produce the all-option equations of motion, we look now at 

an arbitrary pair of successive bodies Bj, Bi, i > j, shown in Fig. 1.19. 

The body Bi is translated and rotated both relatively with respect to 

o .x .y .Z. and directly with respect to OXYZ. The translation is measured by 
J J J J 

the vector r .. (t) 
Jl. 

of relative position, with initial value 

to E R and the distance between O. 
J 

and 

(x. _ X . ) 2 + (y. _ Y . ) 2 + (z. _ Z • ) 2 
J l. J l. J l. 

The motion of Bi referred to Oxyz is expressed as 

r . (t) r . (t) + r .. (t) ) Ol. oJ Jl. 

~ . (t) #: . (t) + r .. (t) + W. (t) x r .. (t) 
Ol. oJ Jl. l. Jl. 

r~. = r .. (to) , 
Jl. Jl. 

(1.4.5) 

with wi the angular velocity of Bi. To formalize the dynamics we calcu

late 
.. 

r . 
Ol. r oj + Wi x (Wi Xrji) + wi x r ji + rji + 2Wi X~ji (1.4.6) 

The first and fourth term on the right hand side represent the translational 

acceleration, the second and third centrifugal and tangential, and the 

last term Coriolis acceleration. 
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z 

x 

Fig. 1.19 

Multiplying the acceleration (1.4.6) by corresponding coefficients 

of inertia of a body, and equalizing the result to the resultant of forces 

acting upon this body, we obtain the standard Newton equations of motion. 

Referring now to the choice of applied forces we have used in the 

point-mass model specified in Section 1.3, the Newton equations of motion 

for each body Bi following all options Bj become 

L. em. (i . +f .. ) +m.w. x (W. xI' .. ) +m.Gi. xi: .. +2m.w. xi .. J 
J ~ oJ J~ ~ ~ ~ J~ ~ ~ J~ ~ ~ J~ 

L.[P .. (r .l+D .. (I' .,f .)]+f. (r .,~ .,u)+R.(r .,f .,t) 
J J~ o~ J~ o~ O~ ~ o~ o~ ~ O~ o~ 

• } (1.4.7) 

i,j = 1, ••• ,M' 

with the first term on the left hand side representing translative inertia 

force, the second and third terms centrifugal and tangential forces and 

the fourth term the Coriolis forces, which are all called the fictitious or 

kinetic forces as opposed to the applied forces P.=L.P .. , D.=L.D .. , 
~ J J~ ~ J J~ 

f. and the perturbations n. 
~ ~ 

In the applied forces used presently, we 

obviously amalgamate the interacting forces between the bodies of the net-

work and the suspension forces, which may appear between each of the bodies 

of the network and its environment. The latter may obviously be considered 

as an extra body in the network, a suspension body, entirely analogous to 

the suspension point of Section 1.3. 

NOW, the reader may note that a rigid body is a system of particles 

whose distances are locked constant. In particular, such a body may be 

represented by two rigidly connected point-masses, as illustrated in 
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Example 1.1.4, see Figs. 1.9, 1.10 and our double interpretation of the 

rod, there. Hence each body in the multi-body network may be replaced by 

two point-masses of the point-mass model, subject to constraints !rij! 

const or 

const d~ . 
l) 

(1.4.8) 

with m.,m. denoting the selected pair. Then our M' - body network becomes 
l ) 

an M = 2M' point-mass model with the branches corresponding to bodies sub-

ject to the constraints (1.4.8). In the above sense, our multi-body model 

becomes a special version of the point-mass model. 

On the other hand, it is obvious that when the multi-body model is 

deprived of the rotational DOF, it formally reduces to the point-mass 

network. To show this, it suffices to let iii. (t) - 0 in (1.4.7) obtaining 
l 

r 
oi 

= r + r .. and thus the vectorial form of (1.3.1) . Consequently we 
0) )l 

may use equivalently both the models for structural representation, adjust-

ing only the number of objects. 

The work done by the particular classes of applied forces on virtual 

(without change in time) displacements is 

oW Ii p. (r .) Or . 
p l Ol Ol 

oWD Ii 
D .(r .,; .)or 

l Ol Ol oi 
(1.4.9) 

oWF Ii F.(r .,r .,u.)or . 
l Ol Ol l Ol 

oWR Ii R.(r .,f .,t) -r 
oi l Ol Ol 

where from the total virtual work is 

oW = Ii 
(1'. + D + F + R.) or . 

l i i l Ol 
(1.4.10) 

with the reactions producing no work, as we assumed them ideal. From 

(1.4.9) we have the potential of the conservative forces F = I. F. 
l l 

with their components 

F 
y 

F 
z 

and the potential energy V (t' .) = - UK Ct' .) 
Ol Ol 

the generalized dissipation function 

UD = I- J D. CE ., ~ .) dr . 
l l Ol Ol Ol 

(1.4.11) 

(1.4.12) 

Similarly (1.4.9) produce 

(1.4.13) 
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provided 

(1.4.14) 

where V,V,V are the components of V I. V .• The function UD x y z 1 1 

becomes the known Rayleigh damping function when (1.4.9) are linear. For 

detailed derivation of the above based on (1.3.1) and (1.4.7), the reader 

may look in Skowronski-Ziemba [3J. 

Let us now suppose for the moment that the Cartesian coordinate space 

Oxyz containing our multi-body network moves, not with the inertial motion, 

but with some stipulated motion. Referring to our example in Fig. 1.18, 

let us say that the origin 0 of the plane Oxz moves with inertial velocity 

(Vx'V z ) and constant acceleration (ax,az ) 

(1.4.1) becomes 

x(t) v t + ~a t 2 
x x + r oi cos e (t) 

z(t) V t + ~a t 2 + r 
oi 

sin e (t) z z 

In general, when reference frames are moving, 

Then the motion described by 

each coordinate of one frame 

becomes a function of each and every coordinate of the other, and time: 

x' (t) x' (x,y,z,t) 
1 

y' (t) y' (x,y,z,t) 

J 
(1.4.15) 

z' (t) z' (x,y,z,t) 

for Oxyz moving in 0 'x 'y' z' • 

As mentioned, the equations (1.4.7) and then subsequently the shapes 

of the forces embrace all options for the design. In particular cases, the 

model will be specified by the structural matrix S, which is successively 

applied to all the forces, both kinetic and applied, thus zeroing the non

existent interactions in each of these classes of forces. 

In particular, the designer may like to differentiate between the 

substructures, from within a single or several trees available, by selecting 

a specific chain of bodies along a prescribed structural path through the 

network. In general, these chains may be dependent, i.e. the forces 

involved may interact across them. Let us say that we wish to split the 

model into m such chains, each chain j enclosing Mj bodies Bl j, ••• ,BMj , 

j = l, ... ,m In the same way any of the motions discussed before may be 

referred to the chain j by labelling it with the superscript j, e.g. 

o? x? y~ zj for the body reference system, etc. Then the equations (1.4.7) 
1 1 1 i 
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become a set of equations for each Bi j in the particular chain j, with 

the coupling forces referring now to coupling both within the chain j and 

across the m chains. We obtain 

(1.4.7)' 

v 1, ... ,M' i 
j 

1, ••• ,M ; j 1, . .. ,m ; M' , 

for the motion equations referring to chains. These equations will again 

simplify depending upon the matrix S. 

On the other hand, the designer may want to select several independent 

chains. It applies when the substructures concerned are disjoint or at 

least separated except for a common Bl. The latter case occurs, for 

instance, when designing appendages of a spacecraft (antennae, platforms, 

etc.), or when coordinating several robotic arms, or when guiding a rendez

vous between two or more spacecraft or ships, or when forming the model for 

an independent wheel suspension in an automobile. 

An independent chain may be obtained within any tree when a structural 

direct path is drawn in the network from some Bl upwards, see the sequence 

Bl,B2,B4,B6, .•. in Fig. 1.16. The term "direct path" is frequently used, 

but may be confused with the state trajectory or "path" in dynamics. Thus 

we leave the name of "chain", but will talk about the direct path method. 

The method is already classical in the multi-body modelling, cf. Ho

Herber [lJ, Ibrahim-Modi [lJ, Jerkowsky [IJ. It has several distinctive 

advantages over the other means of modelling the multi-body systems. First 

and foremost, it allows us to use equally well both of the most popular 

methods of deriving the motion equations: the Lagrange formaLism, easy to 

obtain from the kinetic and potential energies, and the numericaL design of 

the so called Newton-EuLer modeL which uses the successive calculation of 

system parameters from Bl upwards. Moreover, the direct path method opens 

the way to introduce the continuous mass distribution in the body integrat

ing the mass elements along the chain, which is a significant feature of 

modelling flexible systems, see Section 1.8. 

It follows from the above discussion that the Newton-Euler formalism 

is based upon the relative reference within the sequence of a chain, while 

the Lagrange formalism, as we shall see, may use both relative and direct 

references. That is, in fact, why the Newton-Euler formalism is considered 
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convenient for a fast numerical simulation of the kinematics, see Hollerbach 

[lJ, while the Lagrangian formalism gives much better physical insight into 

the system which moves and serves dynamics. For a comparison of these two 

methods, see Snyder [lJ. 

Since the chains are independent, for the general purpose, investiga

tion of an arbitrary chain will do. Similarly as with the structural matrix 

for the network, the structural case study of our chain is based on two 

matrices. The first is the so called ineidenae matrix, say sj, j = 1, ••. ,m , 

m the number of chains. 

to the chain Bl j ~ BMj 

a single chain now, the 

It is defined by s~. 1 when a body Bi belongs 
l.) 

and s~. = 0 otherwise. Since we are dealing with 
l.) 

superscript j will be dropped if no confusion may 

occur. The second matrix is the limb-branch matrix A. defined by a .. = 1 
l. l.) 

when Bi is the follower of Bj, and a .. = 0 
l.) 

otherwise. The limb-branch 

matrix is also called a transformation matrix between the body coordinates 

of Bi and Bj, j = i - 1. The name is particularly often used in the 

modelling of robotic manipulators, see Paul [lJ, Snyder [lJ, Skowronski [32J. 

The matrix is a basic tool in the Newton-Euler method of modelling. 

In order to illustrate the procedure closer, the reader may recall the 

example of Fig. 1.18 with the kinematics determined by (1.4.2) - (1.4.4), 

noting the relative reference of the body coordinates: Bl to Oxyz, and 

The equations (1.4.2) - (1.4.4)" can be easily rewritten in 

the matrix format. 

Generalizing the above example, we conclude that the use of the trans

formation matrix Ai may be considered a routine. Each of these matrices 

describes the relative translation and/or rotation between OXiYiZ i and its 

predecessor O.x.y.z.. Then the position and orientation of Bi in Oxyz 
) ) ) ) 

are given by the matrix product Ti = Al • Az ..•.• Ai' with Ai transform-

ing the position vector rO)' of Bj into rOl.' of Bi: r. = A.r .• The Ol. l. 0) 

matrix may include rotation matrices (direction cosines) and/or translation 

matrices (components of translation vector). The matrices will normally be 

3 x 3 dimensional, but the practice of using them in calculating robotic 

manipulator kinematics suggested an artificial augmentation to 4 x 4 with 

r oi = (ai,bi,c i ) represented by the matrix [xiYizi,diJ where a i =xi/di , 

bi = Yi/di' c i = zi/di' d i = const. For an excellent detailed instruc

tion, see Paul [lJ. The augmentation is purely technical and the matrices 

generated are called homogeneous. In our simple example on Fig. 1.18 

following (1.4.1), (1.4.4), we have two such matrices 
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cos e - sin e 0 0 1 0 0 r 
02 

sin e cos e 0 0 0 1 0 0 

A1 A2 = (1.4.16) 
0 0 1 0 0 0 1 0 

0 0 0 1 0 0 0 1 

the first being rotation matrix only, the second translation only. Then 

the transformation matrix for the chain is 

cos e - sin e 0 r cos e 
02 

sin e cos e 0 r sin e 
T2 A1 . A2 

02 (1.4.17) 
0 0 1 0 

0 0 0 1 

It is worth noting that T2 specifies the case of rotation first and 

translation second, along the path concerned. The translation gives the 

fourth column in T 2 . 

We may have a similar arrangement about velocities, with the transfor

mation matrices Ai replaced by Jacobian matrices: 

(~ .. ,w .. ) = J .. ((3 1 , ••• ,8.,f , ... ,X:.) , 
J ~ J ~ ~ ~ 01 0 ~ 

. ... 
J.: (e 1 ' ••• , e . , r , x: .) ~ (x., y . , z .) , 
~ ~ 01 o~ ~ ~ ~ 

where wi are the vectors of angular velocities in the rota.tion of Bi. 

Both types of transformation specified by Ai and J i , i = l, ... ,m , 

give the so called forward kinematics along the chain, allowing us to cal

culate the Cartesian coordinates 

x . , y . , Z . from r ., e . , i: ., e. . 
~ ~ ~ O~ ~ O~ ~ 

Xi,yi,Zi and velocity components 

Choosing the latter as lagrangian coord in-

ates which specify DOF of the system, we may need inverse transformations, 

i.e. so called inverse kinematics, which is not uniquely defined and much 

more difficult. The reader may observe this for instance by attempting to 

invert (1.4.1), thus obtaining multivalued inverse trigonometric functions. 

See also Section 1.6, Example 1.6.1. The names of forward and inverse 

kinematics come from the theory of manipulators, where the inverse kinematics 

is fundamental for modelling and design, see Tarn-Bejczy-Yun [lJ. There is 
_1 _1 

no general algorithm for calculating the inverses Ai ' J i ' but some 

numerical solutions are possible, see Lenarcic [lJ. Thus, when the Newton

Euler formalism is to be used, which is numerical anyway, the discussed 

solution is quite feasible. 
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Passing now over to the dynamics of our arbitrary chain selected from 

the network, we must distinguish such chains from within the general network 

equations (1.4.7), or within the assembly of chains (1.4.7) '. 

The equations (1.4.7)' simplify, as each body Bi j in the particular 

chain j intersects with its predecessor in this chain only, i.e. pairs 

B o j B oj 
l , J We then obtain 

o 1 Mj JO l = , ••. , , 1, ... ,m 

where Mj is a number of bodies in the chain j, and m is the number of 

chains. 

1.5 LAGRANGIAN MODEL. INERTIAL DECOUPLING 

The motions of any of the two Cartesian models discussed are often 

subject to equality constraints, which may move (rheonomic), but will be 

assumed holonomic (algebraic or integrable, if differential): 

i=l, ... ,k<oo. (1.5.1) 

Moreover, as mentioned, the Cartesian space frame of reference Oxyz may 

also move with given motion but not necessarily inertial. Then the 3M 

Cartesian coordinates become dependent and the motion equations of the 

model must be solved together with (1.5.1). Theoretically, one may solve 

(1.5.1) and using the solutions in motion equations, say (1.3.1), obtain 

3M - k independent coordinates which uniquely describe the motion of the 

network along the constraints, at the same time specifying the DOF of the 

system. However, it is possible and usually more convenient to choose 

n = 3M - k independent parameters of the system, for instance like eo,r 0 

l Ol 

in (1.4.1) - (1.4.4), which may describe uniquely the motion along the con-

straints, each parameter for every DOF. Such parameters are called gener

alized coordinates ql' ... '~. The Cartesian coordinates x1, ... ,zM of 

Oxyz become functions of ql, ... ,qn' such that substituting these 

functions into (1.5.1) we obtain the identity for all qi' i = l, ... ,n 

The vector q ~ (ql, ... ,~)T is called the configuration vector of the 

system and ranges in the Configuration Space 1R n. The choice of 

ql' •.. '~ is not unique, as seen in the examples of Section 1.1, in par-
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ticular in Example 1.1.4. In the substructure modelled as an independent 

chain, the generalized coordinates are usually the hinge-variables (describ

ing the DOF at a hinge), in robotic manipulators they are as a rule the 

joint-variables, cf. Coiffet [lJ, Paul [lJ. 

In order to satisfy the rheonomic constraints (1.5.1) and accommodate 

the possible case of a moving Oxyz, the mentioned functions of parameters 

ql, ... ,qn or as we often call them the transformations ql""'~ + 

x1, ... ,zM must, in general, be also explicitly time dependent: 

r . 
OJ. 

r . (q,t) 
OJ. 

(1.5.2) 

Differentiating, we obtain the velocity 

af . a~ . 
OJ. \,n OJ. . 

fOi = ~ + Lj=l ~ qj 
J 

(1.5.3) 

Thus the kinetic energy becomes 

T (1.5.4) 

Carrying on the expansion, we obtain 

T(q,q,t) ) (1.5.5) 

where 

M. 
J 

ar . 
\' OJ. 
Limi~ 

a~ . 
\' 0 J. 
L·m·-a-

J. J. qj 

with Mjk(q) = ~j(q) being coefficients of the corresponding positive 

definite generalized inertia matrix M(q) When the transformations 

(1.5.2) are stationary (do not depend explicitly on time), we have 

To = 0, Tl = 0 and thus the kinetic energy becomes the square form 

(1. 5.6) 

Similarly to (1.5.3), the arbitrary virtual displacement Or. can be 
OJ. 

connected with the virtual displacement oq. (wi thout the variation in 
J. 

time) by 

a~ . 
Or . LJ. ~ oq. (1.5.7) 

OJ. qj J 
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To transform the inertial forces in (1.3.1) from Cartesian to genera

lized coordinates, we calculate 

af . 
I· m. ~ . of = I. m. ~ . I. ~ oq. 
~ ~ 0 ~ 0 i ~ ~ 0 ~ J oqj J 

(1.5.8) 

We may now write formally, 

.. ai'. { d ar . d af. } <; - o~ <; .:. o~':' o~ 
L.. m. r . -,,- = L.. dt (m. r . -,,-) - m. r . dt (-,,-) 
~ ~ 0 ~ oq . ~ ~ 0 ~ oq. ~ 0 ~ oq . 

J J J 

(1.5.9) 

In the last term of (1.5.9) the differentiation with respect to t and q. 
J 

may be interchanged, for, in analogy to (1.5.3), 

by 

d ar. 
-(~) 
dt aq. 

J 

ai . a2r . a2r . 
o~ <; o~. o~ 

= --=L. q +---
aq. k aq. aqk k aq . at 

J J J 

(1.5.3) . From the latter we have also 

af 
oi 

af 
oi 

aer. aq. 
J J 

substituting the above in (1.5.9), 

:; aroi {d .:. a~oi .:. 
L.m.r. -a- = I· dt(m.r .--}-m.r. 
~ ~ u qj ~ ~ u aq. ~ u 

J 

ar . } o~ aq:- , 
J 

wherefrom, by virtue of (1.5.4), we obtain for (1.5.8): 

(1.5.9) 

(1.5.10) 

:; af 0 i d aT aT I . L. m. r . -a- oq. = I. [d t (-ao-) - -a - ] oq. , (1. 5 .11) 
J ~ ~ o~ qj J J qj qj J 

as the value of inertia forces in our Cartesian motion equations. On the 

other hand, the work done by the applied forces on virtual displacement 

(1.4.10) equals that in generalized coordinates: 

L.(P.+D.+f.+JL)or. = I. Q. oq., i,j = l, ... ,n 
~ ~ ~ ~ ~ o~ J J J 

(1.5.12) 

In the above Q. (q,q,u,t) is the genepalized applied fopce defined by the 
J 

equality (1.5.12), and u(t) = (u 1 (t), ... ,ur(t»T ERr is a control vector 

generated by actuators acting in the system. Then by the motion equations 

(1.3.1) or (1.4.7), (1.5.11) and (1.5.12) result in 

<; d aT aT <; 
L.. [dt (~) - -" - ] Oq. = L.. Q. oq. . 

J oqj oqj J J J J 

Since the above must hold for arbitrary oq., j 
J 

motion equation in the Lagrange's second form 

j = l, ... ,n . 
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Similarly to (1.5.12) obtained from (1.4.10), we can form equalities 

corresponding to WK , WD and WF in (1.4.9), whence Qj may be represented 

by the sum 

of potential, damping, input, and perturbation forces respectively. Swapping 

the subscripts to more convenient i, we have the Lagrange motion equations 

d aT aT P (_) D _.:.) F _ .:. - R _ .:. 
dt (r) - -a- = Q. q + Q. (q,q + Qi (q,q,u) + Q. (q,q,t) 

qi qi ~ ~ ~ 

Then by the above and (1.4.11), 

p -
Qi (q) 

aUp(q) 
--aq.-

~ 

i=l, ... ,n 

and, introducing the Lagrangian function 

(1.5.15) 

(1.5.16) 

where V(q) = -Up(q) is the potential energy of the system, the Lagrange 

equations obtain their standard format 

(1.5.17) 

with all the total energy changing forces on the right hand side. 

Let us now assume that T - T2 , that is the kinetic energy is the 

quadratic form (1.5.6). Then the equations (1.5.15) may be written as 

or 

Q. (q,q,u,t) 
~ 

(1.5.18) 

where 

is the so called Christoffel's symbol, see I'llii ttaker [lJ. The second 

term on the left hand side specifies the Coriolis and centrifugal forces. 
C - .:. 

Denoting it Qi (q,q) we obtain the dynamically coupled Newtonian form of 

the Lagrange equations 

,n .. C _.:. D (-.:.) P - F - .:. - R - .:. 
L. lM .. q.+Q.(q,q) -Q. q,q -Q.(q) = Q;(q,q,u) +Q;(q,q,t). 

J= J ~ J ~ ~ ~ ~ ~ 
(1.5.19) 

Since T = T2 with positive definite matrix M, it follows from the 

Sylvester criteria that its diagonal minors of M are positive. Hence M 
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with coefficients is nonsingular and there is the inverse 

M-:-: = M .. / det M, i, j = l, ... ,n , where 
~J J~ 

M .. is a cofactor to the element 
J~ 

M.. of det M. Multiplying now 
J~ 

each of the equations (1.5.19) by M-:-: , 
~J 

summing them up and remembering that 

we obtain the inertially decoupled symplectic form of the motion equations 

(see Example 1.1.3): 

q. + f. (q, q) + O. (q, q) + IT, (q) 
~ ~ ~ ~ 

F. (q,q,u) + R. (q,q,t) 
~ ~ 

(1.5.20) 

i 1, ... ,n , 
where 

\" -1 C -.:. 
= L.' M .. Q. (q,q) 

J ~J J 

are the centrifugal -CorioUs force characteristics, 

O. (q,q) 
~ 

\" -1 0 - .!. = - L. . M .. Q. (q, q) 
J ~J J 

are the damping force characteristics, 

are the potential force characteristics, 

L. Q~ (q,q, u) , 
J J 

are the input force characteristics, and 

\" R (_.!. ) = L.' Q. q,q, t 
J J 

are the external perturbation force characteristics. 

- T 0- T Forming now the vectors f (fl,···,fn), (OI, ... ,On) , 

(1.5.21) 

(1.5.22) 

(1.5.23) 

(1.5.24) 

(1.5.25) 

- T F- T T IT (ITl' ••• ,ITn), = (F l , ••• ,Fn) and R = (R l , .• . ,Rn) , the equations 

(1.5.20) may be written in the vector form 

(1.5.26) 

Since the work done by potential forces Wp is additive and thus so 

is the potential energy, then by (1.5.16) and V(q) = -Up(q) , we may 

separate the gravity potential forces Q~(q) from the elastic (spring) 
~ 

t · l f K - p(-) /:, K(_) G( poten ~a orces Qi (q) and write Qi q = Qi q + Qi q) i=l, ... ,n, 

which yields 
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with the obvious meaning of the spring characteristics Ki (q) 
characteristics Gi @ . Then vectorially 

IT(q) = K(q) + G(q) 

where - /::, T - /::, T 
K = (K 1 ,··· ,Kn) , G = (G1 ,··· ,Gn ) . 

Consider (1.5.20) and move all the characteristics to the 

side. Then resolving it with respect to dqi/dt and dqi/dt 

we obtain the so called phase-space equations 

dqi -ri (q,q) -Di (q,q) -ITi (q) +Fi (q,q,u) +Ri (q,q,t) 

i = l, ... ,n , 

(1.5.27) 

and gravity 

(1.5.27) , 

right hand 

and dividing, 

(1.5.28) 

describing instantaneous slopes of the first integral lines of (1.5.20) in 
2n • 

the phase space IR of points (q(t) ,q(t» € /::, X /::'. Observe that 
q q 

(1.5.28) can also be written as the system 

d~ 
-r - D - IT + F + R n n n n n 

} (1.5.28) , 

dt 

representing the first integral lines in IR 2n in general non-unique, see 

Section 2.1. It thus follows that by virtue of (1.5.28) such lines may be 

equivalently investigated on n projection planes Oqiqi' 

We shall return to this topic in Section 2.1. 

i = l, ... ,n 

with the DOF established and the generalized or lagrangian coordinates 

selected accordingly, we may now represent the system in terms of the 

schematic diagram shown in Fig. l.20(a), see also Example 1.1.2 and Fig. 

1.7. The inertial objects, point masses mi , each with a single DOF, are 

interconnected - each with all others - by a combination of force charac-

teristics. An object in equilibrium position q. = 0 
l. 

is shown in Fig. 

1.20(b). Depending upon the organization of the model, the characteristic 

must be divided into those connecting the inertial objects to the frame, 

call them "eigen" characteristics for want of a better word, and those 

connecting two arbitrary objects thus coupling the corresponding DOF, called 

coupling characteristics. By the same argument as in justifying (1.5.14), 

we may write 

r .. (q.,q.) + L. r .. (q.,q.,q.,q.) 
l.l. l. l. J l.J l. J l. J 

(1.5.29) 
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(1.5.30) 

11.(q) = IT .. (q.) + L. IT .. (a,q.) 
~ ~~ ~ J ~J r J 

(1.5.31) 

with the subscripts ii denoting the eigen-characteristics and ij denoting 

the coupling characteristics, see Fig. 1.20(a). The latter will be made 

dependent of the relative displacements and velocities between the DOF 

concerned, i. e. (q. -q.), (q. -q.), wherever it applies. 
~ J ~ J 

Note that the form of (1.3.30), (1.3.31) allows for an arbitrary way 

of coupling the characteristics, that is, for all possible combinations 

of the interconnections shown in Fig. 1.14 and briefly discussed in 

Section 1. 3. 

(aJ (bJ 
Fig. 1.20 

One of the possible versions of combining the characteristics, both 

connecting to the frame and coupling, is illustrated in Fig. 1.21. It 

shows a parallel connection in the Voigt-like manner, summing up the 

influence of the forces. 

The connection is similar to that for the Cartesian forces in Fig. 

1.14, with K .. (q. -q.) symbolizing the coupling spring forces and with 
~J ~ J 

D ij (qi - qj , qi - qj) at the present stage symbolizing successively all the 

types of damping: positive viscous, negative viscous and dry friction. 

The spring force characteristics Ki (') represent usually an ideally 

restitutive spring (without damping) while all the damping effects are 

modelled by shifting them into Dij (')' A good example here is the wheel 

suspension shown in Fig. 1.22. The real spring characteristic has obviously 

a hysteresis loop, since the tire restitutes the force with some lag. 
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K D 

/ 

(aJ 

K·· lJ 

Fig. 1.21 

Fig. 1.22 
(bJ 

Thus, in physical reality, damping and spring forces should be com

bined and presented by a joint function shown in Fig. 1.22(b), with the 

area of the hysteresis influenced by damping (depending upon the velocity 

qi) which defines the thickness of the loop, while the spring forces 

generate its length. 

Instead, we model the connection by idealized restitution (adiabatic 

curve, shown as dashed in Fig. 1.22(b)), added to the spring K which 

results in the characteristic Kj (q) = aqj + bq;, a,b > 0 , and by the 

damping characteristic Dj (iqj i,qj) measured by the area of the hysteresis 

loop or by iqj i, recall Example 1.1.1. In almost all cases, the damping 

added to idealized restitution is measured by the amplitude iqi of the 

motion involved. 

The idealized restitution on some region of q naturally requires that 

the direction of the responding force be opposite to the initial deflection, 

or in terms of characteristics, 

K .. (q.) • q. ~ 0 , 
1.1. 1. 1. 

(1.5.32) 
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(1. 5.33) 

The first inequality refers to the eigen deflections of the objects, the 

second to the relative deflections in coupling. Obviously, in sum, 

Ki (q)q ~ 0 , (1.5.34) 

which specifies the region of restitution. We shall return to these proper

ties in Chapter 2. Note here that analogously to IIi' we have 

K.(q) = K .. (q.) + L.K .. (q. -q.), i,j= l, .•• ,n, j 'I i. 
~ ~~ ~ J ~J --~ J 

(1.5.35) 

Similar to the kinetic energy, in general, the potential energy may be 

nonstationary. If it is not, it can always be reduced to the square form 

(1.5.36) 

where K = [d 2V/dq. dq. ] is the n x n elasticity matr>ix representing the 
~ J 

organization of spring characteristics in the system. with K = const the 
- T vector K = (K1, ••. ,Kn) is measured by the function Kq. It means that 

spring characteristics become linear and will, as we shall see later, gen

erate only one equilibrium of the Lagrangian model. A very similar descrip

tion may be introduced for damping 

(1.5.36)' 

with D(q,q) the matr>ix damping coefficient. 

When we want to split the Cartesian model into trees or chains of trees 

which may be interdependent, the couplings of the schematic diagram reduce, 

but unless we deal with a specific case, see Example 1.1.2, the general 

diagram stays the same. On the other hand, we will have a need to distin

guish.the motion equation governing particular chains, cf. (1.4.7)'. To do 

so, the configuration vector q(t) of the system is decomposed into m 

particular chain vectors: q(t) fiE. (q1(t), ••• ,<f1(t»T ElRn w~th each such 
_j j j T n J 

chain-configUY'ation vector> q (t) = (q1 (t), ••• ,qnj(t» E~ 

j = l, ••• ,m. Corresponding decomposition is applied to q and 

L.n j = n , 
J •. 
q , as 

well as to the force characteristics. Then the motion equations (1.5.20) 

become 

(1.5.37) 

i 1, ... ,n j , j = l, ... ,m 

Here the j - chain for>ce chaY'acter>istics r . j ( .), I:!.. j ( .), II. j ( • ) have the 
~ ~ ~ 

same structure as defined in (1.5.29) - (1.5.31). Due to the possible 
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dependence between chains, each inertial object m~ may have several 
~ 

successors in the tree concerned and, in general, each chain coupling force 

characteristic may depend on an arbitrary number of components of the vec

tors q(t) and q(t), thus must be related to the latter two full vectors. 

The system control vector u(t) is also decomposed into chain-control 

-j () ( j ( ) j T r j 1 0 h vectors u t = u 1 t , •.• ,l) 0) €:R , j = , .•. ,m, w~t 
rl m r rJ 

:R x ..• xRr = JR , and we assume each chain to be actuated by a separate 

uj(t), although these controls may be later generated by coupled programs. 

Similarly as in Section 1.4, if we go a little further and assume the 

Cartesian model in terms of a set of m independent ahains, the Lagrangian 

model will have the coupling characteristics still more reduced, to connec

tions between an object i and its immediate predecessor i - 1 and successor 

i + 1, only, while the eigen-characteristics of the chain all stay the same. 

The schematic diagram of such an independent chain may be obtained from the 

general case of Fig. 1.20(a) by deleting all connections ij for each mi , 

except those for j = i-l,i+l The motion equations (1.5.20) written in 

the independent chain related format become: 

o 1 j 
1 = , •• • /n 1 j = l, ... ,m 

I. (1.5.381 

Here the particular characteristics also will have the format (1.5.29) -

(1.5.31), but the summation over j will reduce to two values j = i-l,i+l 

The reader may in fact observe that (1.5.38) are immediately obtained from 

(1.5.37) by the above reduced summation and reduction of the vectors g,g. 
So there is no need to study (1.5.38) separately. The vectorial forms of 

(1.5.37) and (1.5.38) are obtainable immediately and it will be assumed 

that the reader can derive the corresponding notation himself. 

1.6 WORK ENVELOPE, TARGETS AND ANTITARGETS 

Not all points of Oxyz may be reached when either of the two networks 

in Sections 1.3 and 1.4 moves. The set of all reachable points in this 

space is usually called a work envelope or a Cartesian work region W in 

Oxyz. The size of such an envelope must obviously depend on the type of 

the structure concerned, the suspension points and the constraints imposed, 

and cannot be specified generally. On the other hand, it certainly is the 
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union of the work envelopes Wi' i = 1, .•. ,M , of the particular bodies 

Bi in the model. If we distinguish particular independent chains j, each 

with the work envelope Wj then such an envelope is the union of W~ for , ~ 

all bodies in the chain j, and W is the union of all wj j = l, ... ,m 

The sets Wj are at least connected, for otherwise a single chain 

could not operate on them. The extent of Wj is determined by the static, 

i.e. equilibrium, configuration in which the top body assumes maximum 

extension from Bl in the direction of some activity (all forces admitted 

except gravity and inertia). since the moment of the force about each 

hinge axis must be zero in the static configuration, the line of action 

must intersect all the revolute hinge axes. This conclusion forms the 

basis of the algorithm for the estimate of the work envelope given in 

Kunnar-Waldron [IJ. Another way of stating the zero-moment condition is 

that the force and the hinge axes form a reciprocal screw system in the 

static equilibrium position, see Desa-Roth [lJ, and the Jacobian of the 

Cartesian to Lagrangian coordinate space transformation vanishes at the 

boundary of Wj , see Skowronski [31J. The latter criterion obviously 

refers to the independent chain structures only. 

When the regions Wj are disjoint, each chain operates without the 

danger of collision with others and there is no obvious need for coordina

tion. In such cases we may select in the work envelope a subregion with 

each point reachable by the chain top, from an arbitrary direction. We 

call such a subregion a dextrous work envelope, borrowing the phrase from 

robotics. The remaining part is called secondary. The situation becomes 

different when Wj intersect, we then need coordination control, see later 

text. 

Heuristic observation may show that Wj of an independent chain is 

in fact the work envelope of the top body BMj, still being the union of 

all W~ 
~ 

i 
j 

1, ••. ,M 

The points of W, which are to be attained under a selected controller 

within a control objective, form the ~iven bounded set T c W called the 

Cartesian target. This set does not have to be connected and may take 

various forms - from a set of points, to a body, a path (curve), or a 

corridor (several paths), in Oxyz. Another part of the control objective 

may relate to avoidance of some Cartesian anti-target TA , specified in 

more or less the same way as T. It may be any obstacle stationary or 

moving in W, and taking various forms in Oxyz, from a set of points or a 

body to a path or a set of paths (corridor). For particular chains j and 
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particular bodies i we may have specified subtargets T~ 
). 

and sub-ant i-

targets Tii denoted the same way as the work envelopes 

Let us now consider the union 11 , in the Configuration Space :lIP, of 
q 

all subsets whose images under transformation (1.5.2) lie in W. Such 11 
q 

will be bounded by extra restrictions imposed upon the configuration vectors 

q(t) and we shall call it the configuration envelope for the system. For 

instance, the double pendulum of Example 1.1.3 and Fig. 1.8 has its Car

tesian coordinates X 1 'Y1 and X 2 'Y2 calculated from q1 = 8 1 , q2 = 8 2 

through the obvious trigonometric relations that specify (1.5.2) of this 

case. Due to nonuniqueness of the functions sin and cos, there may be 

various points (q1,q2) E R2 corresponding to a particular point in Oxyz, 

but the configuration envelope 

points. 

11 will be assumed to enclose all such 
q 

When moving over 11 q' 
the system will have some velocity restrictions, 

which in sum will, at each q, specify the bounded set 11. in the tangent 
q 

R n space to Again such a maximal set f:... will be called the velocity 
q 

envelope of the system. Thus in general, the point (q, q) representing 

the motion of the system will move anywhere in 11 x 11., in the phase space 
q q 

lli2n. very similarly to the Cartesian case, particular bodies i = 1, ... ,M 

and chains l, .•. ,m will have their own configuration and velocity 
Aj , Aj_ Aj AJ.' Aj 
D." wh).le D - n, D " D n, D. , q). q). q). q ). q). envelopes 

The inverse kinematics generating the inverse functions (1.5.2) 

[compare also inverses of (1.4.2), (1.4.3)J produces some sets in 11 x 11. 
q q 

that correspond to the Cartesian target T, subject to suitable velocity 

intervals that are aimed at for the motion over T. It usually suffices 

to choose one of such sets as the configuration target T c 11 with the 
q q 

corresponding velocity target T. c 11. which together will form the phase-
q q 

space target T c 11 x 11. c R 2n for the system. The target is a designed, 
q q 2n 

bounded and closed subset of R such that after the transformations 

(1.5.2), (1.5.3) applied to its points we obtain the desired position of 

the system in the Cartesian target T subject to the velocities required 

by the objective. It obviously does not mean that the same T and corres

ponding Cartesian velocities could not have been obtained by attaining a 

different T in R 2n It is clearly visible on our double pendulum of 

Example 1.1.3, where the given position of m2 may be equally well reached 

using configuration I and using the alternative configuration II, see Fig. 

1.23. The first is attained by reaching the target TqI 

q2 = q~ , the second by reaching the target TqII : q2 = q~, q2 = q~ 
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Fig. 1.23 

The velocities may in turn form a set in the velocity envelope or, as 

we may say, the velocity target T.. The technique used to transfer the 
q 

Cartesian anti-targets into the configuration and velocity antitargets 

T , T • 
Aq Aq 

respectively, is very similar except that this time we want to 

avoid all the images under the transfer concerned, so that TxT. 
Aq Aq 

c /'; 
q 

x /';. 
q 

must cover all the configurations that may lead to the Cartesian 

anti target TA • 

EXAMPLE 1.6.1. Consider now the example in section 1.4 shown in Fig. 1.18, 

with all DOF locked except for two: ql = 8, q2 = r 02 The Cartesian 
f f 

target T is then defined as the point (x,z) in Oxz, while the Cartes-

ian anti target T A is specified by the following strip in Oxz: a:O; x :0; b , 

The transformation (1.5.2), (1.5.3) is now defined by (1.4.2), 

(1.4.3) : 

x } (1.6.1) 

The inverse kinematics means to calculate ql,q2,QI,Q2 from (1.6.1): 

z 
arctan (-.3 ) 

x 2 

z 
arctan (--! ) 

XI 

substituting the Cartesian target, we obtain 

f f 
ql = arctan (z Ix ) , 

which produces a sequence of values for ql. 
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must thus be designed based on that sequence. It is virtually our free 

choice which of the values q7 will be taken, while q; is well specified 

by (1.6.4). For the antitarget TA we must substitute the band x E [a,b] , 

Z E [c,d] into (1.6.2), (1.6.3): 

arctan (c/b) ~ ql ~ arctan (d/a) 

(a2+c2)~ ~ q ~ (b2+d2)~ 
2 

} (1.6.5) 

which is to be avoided with all its points, i.e. (1.6.5) defines TAq 

To invert the velocities in (1.6.1), we differentiate (1.6.2), (1.6.3) 

with respect to time and obtain 

2qzqz = 2:1: 2X2 + 2Z2~2 ' 

• 2 2 • • 
ql sec ql = - (Zz/X 2 )X Z + (l/xz)zz 

which yields 

ql 
-Zz 

:1;z + 
Xz 

~z 

} X2 +ZZ XZ + ZZ 
2 Z Z z (1.6.6) 
X Zz 

qz 
2 Xz Zz =~ +~-

Ix2 + Z2 X2 + Z2 
2 Z 2 2 

To specify the case, let us require that we want the system to be at 
f f rest over (x,z), i.e. that the velocity target T. is defined by 

q 
Then T = TxT. ,with T defined by 

q q q 
some values and all of (1.6.4) and T' q = ° q = 0, is 

q 1 2 

the phase space target of our example. Similarly, specific restrictions 

upon velocities x2 ' Z2 inserted into (1.6.6) give the velocity antitarget 

TAq which together with TAq defined by (1.6.5) produce the phase-space 

antitarget TA TxT.. 0 Aq Aq 

In general, the targets and anti targets in phase-space may not resemble 

the geometric nature of their Cartesian counterparts. When the transforma

tion (1.5.2) is non-stationary (rheonomic constraints) we must determine 

the proposed configuration and velocity targets either in a specific time 

interval in ]R 2n+l, or for all t E]R. The same refers to the anti

targets. Both cases will be illustrated later in particular cases. 
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1.7 HAMILTONIAN MODEL 

The decoupling of the Lagrangian system (1.5.19) that leads to the 

inertia free coefficients of (1.5.20) is quite often needed - particularly 

for the applications of control theory - but not so easily obtainable. The 

latter is mostly due to difficult calculations of the force characteristics 

(1.5.21) - (1.5.25). We obtain the dynamically decoupled format of the 

motion equations immediately, if we apply the Hamiltonian model. An extra 

advantage here lies in the fact that such a model is formed in terms of a 

scalar function, which is almost always the (calculable) total energy of 

the system. Thus we may more easily extend the model to the continuous 

media case. The passage between our Lagrangian equations and the Hamilton

ian model is done using the Legendre transformation of classical Mechanics. 

We introduce the new variable 

(- - ) 6 dT(q,~,t) p. q,q,t ~. 
l aq. 

l 

i 1, ... ,n (1. 7.1) 

called the generalized momentum. Then we can prove, under fairly general 

conditions, see Banach [lJ, that the relation (1.7.1) can be resolved with 

respect to qi' i 1, ... ,n 

i 1, ... ,n (1. 7.2) 

- 6)T -where p = (PI' ···,Pn E 6 .. Substituting (1.7.2) into L(q,q,t) we obtain 
q 

L = ¢(ql, ... ,qn'¢l' ... '¢n,t) Differentiating, 

] (1. 7.3) 

Since the potential energy V(q) does not depend upon qi' (1.7.1) gives 

dL(q,~,t) 
Pi = dq. 

l 

Hence by (1.7.1) and L 

From (1. 7 . 3) , 

Defining now the Hamiltonian function 
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H(q,p,t) ~ I. p.q. - L(q,~,t) 
J J J 

(1. 7.4) 

(1. 7 .5) 
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and assuming that Cr j , L(·) are functions of q,p,t, i.e. that they are 

specified by ¢i (.),¢(.) , we have 

H=L·P.g. 
J J J 

- ¢(q'¢l'···'¢n,t) (1.7.5) 

Then 

dH 
dg. d¢ 

1 
L· p. 

_J 
dqi J J dqi dqi 

dH 
dg. d¢ 

Cri Lj 
J 

dPi 
+ Pj dPi - dPi 

) 

(1.7.6) 

(1.7.6) 

and by (1.7.4) 

dH d¢ dH 
Cri dqi - dqi dPi 

(1. 7.7) 

The Lagrange equations (1.5.17) give 

L ¢(q'¢l'··· '¢n,t) , we have d¢jdq. = p. 
l l 

1\ = dLjdqi + Qi wherefrom by 

Thus by (1.7.7), 

Cri 
dH('I,p,t) 

1 
dPi 

(1.7.8) 

Pi 
dH(q,p,t) 

+ Q. (q,p,t) 
dqi l 

In the above, Qi represent the sum of energy changing forces in (1.5.17) 

with (1.7.2) substituted. Thus, in general, we obtain 

p. 
~ 

dH(q,p,t) 

dPi 

dH('I,p,t) D - -) F( __ - R( __ ) 
d + Q. (q,p,t + Q. q,p,u,t) +Q q,p,t 
qi ~ l 

} 
forming the canonical motion equations of our Hamiltonian model. 

(1. 7.9) 

Note that the equations (1.7.9) are inertially decoupled, first order 

differential equations, while at the same time their right hand sides 

represent forces, not characteristics (forces per inertia). Both these 

features are distinct advantages of the Hamiltonian model. Note also that 

for scleronomic constraints when the kinetic energy is not an explicit 

function of time, and so L(·) and H(·) are not such functions, the 

system simplifies to the case of Pi = ¢i(q,q) generating 

dH(q,p) 

dPi 

dH(q,p) D F 
d + Q. ('I,p) + Q. (q,p,u) + 
qi l l 

i=l, •.. ,n, 

which is the most frequently used form of the Hamiltonian model. 

(1.7.10) 
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EXAMPLE 1.7.1. Consider the ceiling suspended two DOF, PR - manipulator 

(prismatic, rotary) shown in Fig. 1.24. It works on a horizontal bench. 

The amalgamated mass centers of links and joints, that is, the positions 

of m. , are calculated and located at a fixed distance on the link axis. 
1 

We also recognize the contribution of the actuator inertia separately. The 

spring suspending the first link to the base is assumed linear, in view of 

the design which allowed to take it with constant diameter and constant 

cross section of the coils, as well as performing relatively small ampli

tudes of deflection r(t) 

Following Fig. 1.24, we have 

and thus 

S = kX:1- SPRING (RESTORING) FORCE 

TO LINK 1 WHEN OISPLACED 
FROM EOUILIBRIUM 

+-,--,.-,---1. Yo,r° : POSITION OF m1 

(J 
ACTUATOR 1 

WHEN S = 0 

q.1=r(t) 

'1-2= B( t) 

Fig. 1.24 
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We calculate the kinetic energy for a particular 

and then for the actuators 

m. : 
1 

where Ia2 is the rotary actuator inertia coefficient. Hence, the total 

kinetic energy for the manipulator is 

n ". 1 ( !/, 2 ) .2 
- m2"'2q l q2 Sln q2 + "2 m2 2 + Ia2 q2 (1.7.11) 

or in matrix-vector form 
l'T -.!. 

T ="2 q M(q)q, where 

[
m +m +m 

1 al 2 

-m2!/,2 sin q2 

-m2!/,2 sin q2j 

m2!/'~ + Ia2 

(1. 7 .12) 

is the inertia matrix of our case. Similarly we calculate the potential 

energy to obtain 

(1. 7.13) 
\ 

Hence the Lagrangian L = T - V is 

L = t Mll CI~ + M12 (q2)CI 1CI2 + t M22CI~ + + kq~ - 9.81(m 1 +m2)qlj 
(1.7.14) 

- 9.81m2 (!/,2 cos q2 +!/,l) 

where M .. are the coefficients of the matrix M(q) of (1.7.12). Intro-
1J 

ducing the damping forces in each joint as Q~ = A. I CI· I CI., CI1. 'I 0 , 
1 1 1 1 

i = 1,2, and substituting all the above into (1.5.17) we obtain the motion 

equations 

+m +m)q -m !/, q sinQ2 -m2!/,2Q22 cosQ2 +kQl al 2 1 2 2 2 

-9.81(m1 +m2) +A1ICI1ICI l = Q~ 

(m2!/'~ + I a2 ) CI2 -m2!/,2CIl sin q2 + 9. 81m2!/'2 sin qz + AzCIz lCI2 1 

F 
-m2!/,2CIlCIzcosq2 = Qz 

or in vector form 

[
m +m +m 

1 al 2 

-m2!/,2 sin q2. 

(1.7.15) 

(1.7.16) 
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This is rather difficult to decouple inertially which, as mentioned, is 

needed for the control theory study. We may thus use our alternative 

Hamiltonian model. 

From (1.7.1) and dL/dq. = 
~ 

dT/dqi i 1,2 , we have 

dL 
+ MI2 (q2)q2 

1 
PI dql = Mil ql 

dL () . 
+ M22 q 2 P2 r = MI2 q2 ql 

q2 

with M .. specified by (1. 7.12) . Then also, see (1.7.2), 
~J 

M22P I -M 12 (q2)P2 -HI2 (q2)PI +MII P 2 
ql detM q2 detM 

substituting (1.7.18) into (1.7.11), we have 

T 

which gives 

where 

M~~ M22 / det M 

-M 12 / det M 

-I 
M22 = MII/detM 

Then, recalling that H(q,p) 

dV 

dql 

dT dV --+--
dq2 dq2 

I 
T(q,p) + V(q) 

elH -I 
dP2 

MI2P I 

and also for our specified damping forces, 
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0__ 
Q I (q,p) 

0__ 
Q2 (q,p) 

, we have 

+ M- I 
22P 2 

(1.7.17) 

(1. 7.18) 

(1.7.19) 

(1.7.20) 

(1.7.21) 

(1.7.22) 

(1.7.23) 
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Given Qr(q,~), i = 1,2 , we can transform them exactly in the same way. 

All the above gives the Hamilton canonical equations (1.7.10) for our case 

as the following equations: 

(1. 7.24) 

in the inertially decoupled form. Note that multiplication by the scalars 

M~~ is a lot easier than by the matrix M- 1 • 
~J 

1.8 FLEXIBLE BODY MODELS. HYBRID SYSTEM 

D 

with the increased speed and presently required precision of work done 

by mechanical system, the bodies must be made stress resistant and thus 

heavy, in order to withstand the dynamics. This in turn dictates that the 

actuators must generate more power, be large and heavy as well. All the 

above contradicts the lightweight requirement for most of the modern struc

tures, particularly those working in space. The obvious solution in the 

latter cases is better modelling and advanced control algorithms. It is 

achieved by allowing flexible objects. The advantages of flexible modelling 

are many, including faster system response, lower energy consumption, smaller 

actuators and, in general, trimmer design. The tradeoff, however, is the 

increased difficulty in control, particularly making it robust against the 

effects of flexure. On the other hand, realistic modelling requires 

covering both, the objects which are flexible and those which can, and thus 

should, be considered rigid, as well as the extra lumped masses and control 

actuators collocated with the hinges. Then the total system comes under the 

joint format of a hybrid (rigid and flexible) model. 

The flexible deflections are usually considered a small (linearizable) 

perturbation of the motion of the rigid substructure which, due to Coriolis, 

centrifugal forces and large angles of articulation, must be taken highly 

nonlinear, see Meirovitch-Quinn [lJ. This is the same philosophy as used 

in the so called shadow beam method, see Laskin-Likins-Longman [lJ. The 

method is based on introducing a rigid floating frame with large motion, 

relative to which small strains in the flexible beam are measured. 
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The flexibility of the objects may be modelled in two basic ways. 

Either we may consider ela~tic beams with continuous mass distribution, or 

we may discretise the object by various means, for instance taking it as a 

set of lumped masses spaced in a specific way along the length of the body. 

It is at least disputable whether the first representation is more accurate, 

see Hughes-Skelton [lJ. Both models are phenomenological and approximate, 

and their use depends on the aim of our investigation, recall our discussion 

of Section 1.2. In terms of calculation, only the discrete model, with 

finite grid of discretisation, is practical. 

A very good review on the recent literature dealing with both contin

uous and discrete systems may be found in Turcic-Midha [lJ, Ho-Herber [lJ, 

and Jerkovsky [lJ, Geverter [lJ, Huston [lJ. 

The continuous mass distribution models may in turn be designed in at 

least two ways, both already classical in Mechanics. The first way refers 

to augmented Lagrange and Hamiltonian models that cover the hybrid system 

case. Such models do not have to be linearized, although we often do so 

for calculational purposes. They are particularly convenient as carriers 

for our type of control study, namely the Liapunov formalism. The work on 

such models, their stabilization and control began with Pringle [1,2J, Wang 

[1,2J and Meirovitch [2J, Meirovitch-Nelson [lJ, as well as Budynas-Poli 

[lJ, with the extension of the Liapunov formalism based on Movchan [lJ. 

The reader may find all the material needed in the book by Leipholz [lJ. 

The second type of continuous mass distribution models is based on 

extensions and modifications of the classical Timoshenko beam theory, 

basically linear. There is obviously considerable literature on the topic. 

Modern results here belong to Book [1,2J, Maizza Neto [lJ, Book-MaizzaNeto

Whitney [lJ, Hughes [lJ and later Seraji [2J, Book-Majette [lJ, Yurkovich

Ozguner-Tzes-Kotnik [lJ, Sima -VU QUoc [lJ, Piedboef-Hurteau [lJ and 

Ahmed-Lim [lJ, the latter three attacking the problem nonlinearly. 

A spatially discrete model of the flexible body makes the hybrid model 

uniform, in that it brings the flexible part into line with the rigid part, 

both described in terms of ordinary differential or difference equations. 

Here also we may have at least several avenues of modelling: reduction to 

a set of lumped masses, finite element methods, modal methods and the Ritz 

and/or Galerkin type series representation of the elastic deformations. 

The literature on the subject is too wide to quote. There are also excell

ent monographs on discrete modelling. The recent works close to our aims 

are those by Hughes-Skelton [lJ, Sunada-Dubovsky [1,2J, Usoto-Nadira-Mahil 
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[lJ and Truckenbrodt [lJ, the latter particularly referring to the series 

representation. We shall use such a model in this text, mainly discussing 

the control results obtained by Skowronski [39,4l,43J. 

The rigid part of the model will be represented by nonlinear equations 

(1.5.19), with the motions considered nominal. Abbreviating 

QC(-~) QD(-~) __ /'; _QCD(q-,q~) , i q,q - i q,q 

we have 

,n .. CD - .!. P 
L· 1 M .. q. - Ql' (q, q) - Ql' (Ci) 

J= Jl J 
(1.8.1) 

To accommodate the elasticity of the bodies, we need an extra set of 

variables considered deviations from the nominal motion. These arise from 

inertia and flexibility of the links as well as the hinges. Such compliant 

variables are generated, as mentioned, by small (linear) deformations and 

represent in some sense the vibration modes. The corresponding equations 

of motion are coupled with (1.8.1) to produce together our hybrid system. 

In order to specify the compliant variables, we introduce the deforma

tion coordinates for the ith body as shown in Fig. 1.25. Then partitioning 

the length of Bi with the gr id 1, ... , Mi ' each element between grids 

with small deformation, we apply the Ritz-Kantorowitch series expansion 

(1.8.2) 

and analogously for vi (xi,t) , wi (Xi,t) Here X. is the spatial 
l 

coordinate along the body, r i \! (x i) , vi\! (x i) and wi\! (Xi) are the shape 

functions (spatial dependence), while ri\!(t) , vi\! (t) , w. (t) l\! are the 

amplitude functions (time dependence), for a particular grid interval \!. 

The first form the link shape vector 

n. (x.) ~ (r. (x.),v. (x.),w.(x.)) , l l - l l l l l l 

the second the compliant vector 

i\ (t) ~ (r i (t) ,vi (t) ,wi (t)) 

for the body Bi. The grid \! = 1, ... ,Mi works as a sequence of imaginary 

joints on the body Bi. Mathematically (1.8.2) means separation of vari

ables and is well known in the theory of linear partial differential 

equations. The equality holds for Mi -+ 00, when the right hand side con-

To ensure monotonic convergence, the shape functions 

must meet some conditions: 
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(a) be continuous to ensure continuity of the deformations, 

(b) satisfy boundary conditions between the elements, and 

(c) ensure that, when displacements of the element concerned 

correspond to a constant (possibly zero) strain, this 

constant is accommodated by the shape function. 

In general, shape functions are difficult to find in any other case 

than the standard long slender rod. And a flexible body in a modern 

machine is often far removed from such a rod, which makes our assumption 

in Fig. 1.25 rather artificial. We leave it as is, since the simplicity 

is instructive. For a background in the method, see one of many monographs 

on the Finite Elements Method. Getting into more details on this 

subject would take us beyond the intended scope of this book. Note, 

however, that owing to our approximation all techniques described later 

apply to the flexible case as well. 

LENGTH OF LINK i 

Fig. 1.25 

As mentioned, the exact deformation is expected for M. -+- 00 • 
J. 

Thus to 

justify the linearization physically, one must take Mi sufficiently large. 

Technically it means to apply stepwise subdivision of the distances between 

grids for as many times as the difference between the obtained successive 

approximations becomes acceptably small. Agreeing to this technique, we 

shall consider the first step, with links broken up by a single grid-point. 

This leads to all (1.8.2) specified jointly by the n -vector of compliant 

variables n(t) ~ (n 1 (t), •.• ,nn(t»T where ni (t) ~ (ri(t),vi(t),wi(t» • 

Elementary mechanical derivation along the lines shown in Section 1.5 

produces the kinetic and potential energies and thus the Lagrangian for the 

vectors (q,n)T, (~,~)T wherefrom we obtain the Lagrange equations of 

motion and then the hybrid correspondent of (1.8.1). In the procedure, we 

follow Truckenbrodt [lJ and obtain the hybrid system in the following 

format with untruncated nonlinearities: 
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(1.8.3) 

- -CD - .! -p - -CD -P Here ~L (n) , Qn (n, n) , Q (n) are the elastic correspondents of M, Q ,Q 
T] n. . 

of (1.8.1), while Mc(q,n) , Dc(q,q,n,n), pc(q,n) and the internal damping 

coefficient matrix D(q,~,n,~) as well as the hybrid restoring coefficient 

matrix p(q,n) represent the coupling between the elastic and joint coord

inates. As specified in Truckenbrodt [lJ, these matrices are formed by 

integrals over the particular shape functions of each element. Letting 

M(q,i;) D. (1.8.4) 

be the hybrid inertia matrix of (1.8.3), which is nonsingular and positive 

definite, we may multiply (1.8.3) by M- 1, and substituting the notation 

V(q,q,i;,n) ~ M-1[(Dcn+QCD)T, (Dn+Q~D)TJT 

P(q,i;) ~ M-1[(Pci;-~l)T, (pn_Q~)TJT 

F(- .! -) ~ 1,1- 1 (Q-F,O)T r q,q,u ';1 

- -' D. '1-1 -R T R(q,q,t) = IV (Q .,0) 

write (1.8.3) in the inertially decoupled format 

I 
(~T,nT)T + V(q,q,n,n) + P(q,i;) = F(q,q,u) + R(q,q,t) 

(1.8.5) 

(1.8.6) 

Obviously V(.); P(·), F(.), R(.) do not directly represent forces, but 

the rates of force per inertia, and as such become the hybrid system ahar
aateristias. They are 2n - dimensional vectors. With more accurate approx

imation, the nominal part dimension n will stay, but the dimension of the 

compliant part will increase to kn, where the integer k shows the density 

of partitioning. the bodies. We have made k the same for all bodies, for 

convenience. This is by no means necessary, see discussion in Usoto-Nadira-

Mahil [IJ. 

So far our partitioning of the bodies is purely technical, based on 

geometry. physical arguments may ask for placing the grid between elements 

Le. for "flexible hinges" according to the succession of the modes of 

vibration of the link, say, at modal points. To attain agreement between 

the latter and our geometry, we may use the method of assumed modes, 
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Meirovitch [IJ. We may also justify our truncation, assuming that the 

amplitudes of higher modes are small compared with the first ones, see 

Book [IJ. The grid 1, .•. ,Mi , i.e. the modal points, obviously depends 

upon the natural modes of vibration, the shape functions become mode shapes 

and the amplitude functions become modal displacements. with v = 1, ... ,Mi 

they build up the variables n. (x. ) which may now be called modal shape 
~ ~ 

vectors and the variables n. (t) called modal deformation vectors. 
~ 

For a more complicated structure of the links, the simple truncation 

along the natural order, i.e. by increasing frequency as above, may not be 

adequate. We may be forced to make a selection of modes, see Hughes [IJ. 

There are at least several avenues of the mode selection, of which the most 

accurate seems to be the mode identification. In classical terms, it means 

that, granted the output obtained from sensors, one applies either the mode 

filtering, see Meirovitch-Baruch [lJ, using the orthogonality of eigen

functions, or the Luenberger-type observers, see Brogan [lJ, without the 

orthogonality condition, practically a Luenberger observer for each mode. 

With the latter, the estimates of the controlled modes are contaminated by 

the contribution of the unmodelled modes, which is known as the observation 

spillover, see Meirovitch-Baruch [2J. 

In case studies of the flexible link structures, we may either 

assume the selection of modes and eigenfunctions as known, or use the modal 

identification that basically follows the idea of the modal observers, but 

is implemented in terms of the nonlinear MRAC parameter and state identi

fiers introduced by Skowronski, [31J. In brief outline, it means the 

following. 

fj. - - T -fj. ( )T Let n(x) = (n1(X1) •... 'nn(xn ))' X= x1, ... ,xn be the system shape 

vector. Moreover, let dVi be the distance along the body Bi from the 
- fj. joint i to the grid point v, and let d i = (db' ... ,diM) be the vector of 

such distances along the body Bi, with the grid location vector in the 

d- fj. - -) system represented by the vector = (d1, ... ,dnm . Further we introduce 
- fj. 

the vector of structural parameters k = (k 1 , ... ,kM.), see Hale-Lisowski 
~ 

[lJ, each chosen to be proportional to physical quantities such as cross-

sectional areas of bar elements, widths of beam elements and thicknesses of 

membrane or plate elements. Quite naturally the inertia and the restoration 

matrices in (1.8.3) depend upon the triple ~(x),d,k The equations 

(1.8.6) have been derived with the silent assumption that this triple is 

known, so that it does not appear explicit under the functions of the 

hybrid characteristics. In the case of our modal identification, (1.8.6) 

becomes 
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(i:?,~T)T +V(q,~,fi,~,fi(x),d,k) +P(q,fi,fi(x),d,k) 

F(q,q,u) +R(q,q,t) ) (1.8.7) 

with the solutions 
- - T.!. .:. TT 

[(q(t),n(t» , (q(t),n(t» J dependent upon the quan-

tities n(X),d,k identified on-line according to the quoted method. It is 

worth mentioning here that, although the classical Luenberger-type modal 

observers accrue the observation spillover, such is not the case for our 

identifiers which, apart from their identifying role, secure a type of 

stability (Lagrange stability) for the overall system. The reader is 

referred to Skowronski [31J for details. 

No matter which method of hybrid modelling is used, the number of 

dimensions grows with the presence of flexible bodies. Thus the computing 

time for solving the equations grows as well, and for a small on-board 

computer, typical in outdoor working robotic systems and often used else

where, may become prohibitively long. This is the case where the observers 

play a constructive role, if they can be made less dimensional than the 

plant. The solutions [(q(t),fi(t»T, (~(t),n(t»TJT are simply replaced by 

those of a suitable identifier for use in the corresponding feedback 

controller. This role becomes particularly significant when such identi

fiers can be designed so that they are integrable in closed form. Then 

the computer works as a calculator with maximal savings of time and effort, 

see Skowronski [50J. 

Before closing this section, we must mention two alternatives to the 

hybrid model (1.8.3). First, let us consider that somebody has assumed the 

lumped system equations (1.8.1) as independent of any compliant variables, 

just as it is written in (1.8.1), for whatever such an assumption is worth 

physically, see Meirovitch-Quinn [lJ, and Streit-Krousgill-Bajaj [lJ. 

Obtaining the solution of such a lumped system in terms of q(t),q(t) , we 

substitute it into a linear compliant motion equation in the role of time 

varying parameters, thus obtaining a linear system with parametric excita

tion (nonautonomous) for the compliant motion, see Sadler 11J, Sadler

Sandor [lJ, Turcic-Midha [lJ. It leads to defining n(t),n(t) needed for 

the hybrid system, or separately. 

The second alternative, of the two mentioned, to writing the full 

system (1.8.3) is to use the same philosophy as above but inverted. We 

assume that the compliant equations which are justifiably linear, are 

solved for fi(t),fi(t) with q(t),q(t) as parameters. Then this solution 

substituted into the lumped equations makes it a parametrically excited 
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lumped system, which can be discussed instead of the hybrid more dimen

sional (1.8.6). 
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Chapter 2 

STATE) ENERGY AND POWER 

2.1 THE STATE AND PHASE SPACE NOTIONS 

If at any instant of time the system dynamics is fully determined by a 

finite number of variables Xl' ••• 'XN ' we call them state variables of the 

system. The time instantaneous values of these variables give information 

on the present state of the system as well as on its past. Thus the state 

state vector x(t) 
T 

corresponding is represented by a = (Xl (t), •.. ,xN(t)) 

to a variable point in the state space RN that describes the motion of the 

system. There t is the independent time variable t;::: to ' 

where as before to is the initial instant. We let ~ be a given bounded 

set (or its closure) in JRN, representing the formal (mathematical) and 

physical constraints imposed upon the state x(t). It will often be called 

a set of admissible states. The motion may proceed indefinitely in ~, i.e. 

for + t E R , 

i.e. 

stipulated. 

+ R = [to'OO), or it may terminate at the finite instant 

t E JRf Rf [to,tfJ The latter is either arbitrary or 

Correspondingly x o ~ x(t o ) , xf ~ x(tf ) denote the initial 

and terminal states. 

Another set of variables predicting the motion is the' finite set of 

control variables u l (t), ... ,ur(t) , t;::: to ' representing instantaneously 

an input to the system. Such input usually secures some control objective, 

usually referring to the motions in RN. The control variables form a 

control vector u(t) (u l (t), ... ,ur(t)) ranging in some given bounded and 

closed set U eRr of control constraints. Note that the boundedness of 

u is natural, as the power of any input is limited, and that without this 

boundedness we might have an indefinite behavior of the system in RN. The 

control variables are generated by a control program based upon the 

67 



www.manaraa.com

(feedback) information represented by x(t) and perhaps upon some independent 

decision at each instant - hence the program will be generally specified by 

a function of x,t. In order to accommodate the discontinuities of such a 

function, which appear in many applications, we formalize it generally as the 

set valued P: /':, X lR -+ set of subsets of U, defined by 

u(t) E P(x(t) ,t) , (2.1.1) 

One of the cases in which the set valuedness of P (.) appears, is the relay 

controller generating desirable switching in the control action. The con

troller is usually specified by 

U = p(x) sgnO"(x) 

where O"(x) is a continuous scalar switching function with 

defining the so called switching surface in /':" and p (x) 

(2.1.1) , 

is a single valued 

branch of the program. The behavior of systems under relay control were 

described at length by Fluge-Lotz [lJ, among others, for wider classes of 

switching functions. It is traditional to define 

j 
+1 0" > 0 

sgn 0" = IS 0" 0 -1 :0: IS :0: 1 

-1 0" < 0 

Such definition is equivalent to that used for Coulomb friction character

istics and allows for continuous filling up of the control cone P(x) of 

values u(t). In this Section, however, we narrow our discussion to the 

single valued particular case u. (t) = P. (x(t)) 
~ ~ 

i=l, ... ,r 

The choice of the state variables x1, ... ,xN is by no means unique, 

and depends very much on our aim of study and perhaps a need to reduce the 

dimension of the model. We shall have two basic avenues of such choice: 

direct and relative. We refer to them successively. 

From Mechanics we know that the motion of a system is fully represented 

by the set of its displacements and velocities, i.e. in lagrangian coordinates 

by the two vectors q(t),q(t) . 
/':, 

It is thus natural to choose xi = qi ' 

x . 
n+~ 

x(t) 

/':, 
qi' i = l, ... ,n 

(q(t),q(t))T E /':, 
q 

N/2, for the 

x/':,.~/':,cJRN 
q 

state variables or 

N = 2n, for the state vector. 

Consider now the Lagrangian equations (1.5.26) or (1.8.6) and assume 

that there are no external perturbations, i.e. R(q,q,t):: 0, or 

fi (x,u) 

f . (x,u) 
n+~ 
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we obtain the so called normal form of the state equations 

i=l, ••• ,N (2.1.3) 

or vectorially 

x = f (x,ii) (2.1.4) 

with f = (f l' ••. , fN) T. This first order system of ordinary differential 

equations is fundamental 
/'; 

in control theory. For the hybrid system (1.8.6) 

we need to choose xi = qi ' x . n+l. 
/'; /'; . /'; . 

x2n+i = qi and x3n+i = ni for 

the state variables, with the 

x(t) 

and (2.1.2) as 

vector 

x /'; x /';. x /';. ~ /'; n q n 

(2.1.5) 

i 1, ... ,2n , 

in order to obtain (2.1.3) or (2.1.4), now with N = 4n. Observe that both 

(1.5.26) and (1.8.6) have been obtained by multiplying the Lagrange equations 

by the inverse inertia matrix and that (2.1.3) is obtainable directly from 

(1.7.10) without any calculations, if we choose itt) ~ (q(t),q(t»T and 

for f i (·) the right hand sides of (1.7.10). Here we also assume 

QR(q,p,t) = 0 for the use in this Section. There is a direct passage 

between (1.7.10) and (2.1.2) via the so called Birkhoff transformation, see 

Moser [lJ. Finally we wish to comment that in this text we will be using 

(1.5.26) and (1.8.6) or their subcases and the fonn (2.1.4) is introduced 

for abbreviation in writing only. 

Let us now discuss the choice of the relative state variables. Their 

introduction is usually useful when investigating a motion with respect to 

an object - either geometric or another system - in Cartesian or state 

spaces. The controlled system may be modelled either in terms of the point

mass or multi-body model. If the motion is considered relative to another 

system, we study the mutual behavior of both systems, 

two chains, j 1,2, we may set up xi ~ q~ - q~ , 

i=l, •.• ,n In the relative motion, the reference 

for instance between 
/'; -l .2 

Xn+i = qi - qi ' 
object or reference 

system is considered a target, by definition located in a neighborhood of 

zero-misdistance between the controlled system and the target set, target 
2n 

curve or target trajectory of a dynamical system in the phase space F 

The choice of relative state variables usually reduces the dimension of the 

model, but the corresponding right hand sides f i (·) of (2.1.3) lose their 

physical meaning as representatives of a force or force per inertia. We 
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shall illustrate such a choice on the following special case. 

Suppose xm = yet) is a curve in D. to which we want to reference the 

motion of our system and let u (t) be a control vector selected in such a 
m 

way that, given suitable functions f(·) and 

concerned satisfies (2.1.4): 
- D. - -z(t) = x(t) - xm(t) 

X f(x ~u ) m m m 
we obtain from (2.1.4) 

z = fez + x (t),u) - f(x (t),u ) m m m 

x! = r(to) = xO , the curve 

Choosing now a state vector 

(2.1.6) 

with the right hand side being of the form (2.1.3) plus a time dependent 

perturbation f(t) = f(x (t),u (t» 
m m which is a given function of t, and 

makes the system nonautonomous - discussed later. We may now rewrite (2.1.3) 

in terms of the old notation x, i.e. as x = f(x,u,t) , but with 

f(O,ii,t) == 0, if we want to consider x(t) as the state vector measured 

relative to yet) which presently becomes the trivial solution x (t) == 0 

Closing our remarks on the choice of state variables, let us comment on 

the special case when no dynamic study is needed, or for some reason may be 

ignored. What is then left is the kinematic investigations, which are based 

on the first (nondynamical) relation in (2.1.2), or (2.1.5), either case 

with both options (direct or relative) of choosing the state variables. With 

the direct choice i = 1, ... ,n, the right hand sides 

(2.1.2) reduce to 

i=l, ... ,n (2.1.2) I 

and (2.1.3) become only kinematic 

xi = fi (x,ii) , i = 1, ... ,n (2.1.3) I 

Obviously with any other choice (2.1.2) I may be more complicated, but 

(2.1.3) I preserve the general normal format. 

Let us now return to our general discussion and assume the direct choice 

of the state variables, i.e. either x = (q,q)T or x = (q,p)T If, in 

particular cases, we shall prefer the relative variables, it will be 

specifically mentioned. 

with the external perturbations R(q,q,t), R(q,q,t) removed, the 

right hand sides of the state equations (2.1.3) - as indicated in (2.1.2), 

(2.1.5) respectively - become implicit functions of time t only, namely 

through x and u. This is the mathematically defining feature of the 

system that is autonomous. The system whose right hand sides of state 

equations are expliCit functions of t is nonautonomous. Physically speak

ing, the autonomous system is governed through its own state x, as the 
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control vector is generated by a program which is state dependent as well, 

and only state dependent, u = P(x) . Traditionally, the system has been 

called autonomous if it included its own power supply, see Kononenko [IJ. 

However, the control of power supply is possible at the output of the 

programming device, thus the system is autonomous, ifit includes its own 

control program, see Fig. 2.1. 

Fig. 2.1 

We say that a function f ( .) satisfies locally the Lipschitz condition 

on b. with respect to x if and only if for any closed and bounded subset 

LIP of b. there is a constant K(LIP) suchthat if(x)-f(y)i ~Kix-Yi 

for all x, Y E b. • The latter is always satisfied when f(·) is continu-

ously differentiable. 

Given the function f(·) b. x U +RN and a program P(x) such that 

f(x,P(x» is locally Lipschitz continuous on b., through each xo E b. 

there passes a unique solution curve to (2.1.3), ¢(xo,.) : R + b. called 

a trajectory or a state path of the system. 

¢ (xo,R) = U ¢ (xo , t) for such a path. 
tER 

We will also adapt the notation 

Note that ¢(xo,.) depends upon 

\i(.). The control program P(·) generating the trajectory is called 

admissible. Due to the defining property of the autonomous system (not 

dependent explicitly of t) the trajectory does not depend upon to and thus 

represents the to-family of motions of the system, each motion starting at 

a given to E R and continuing along the path. In consequence, to determine 

a trajectory any to may do, and we will assume the convenient to = 0 . 

In turn, the xO-family of trajectories over b. gives a first integral 

of (2.1.3). In topological dynamics it is interpreted as a homeomorphic map 

(one-to-one, onto and continuous) of R N into itself and called a dynamical 

system. The basic features of such a map are:-

(a) 

(b) 

(c) 

continuity of 

identity at xO 

group property: 

-0 in x ,t 

: ¢(xO,t o ) = xO 

¢[¢(xO,t 1 ),t 2 J 
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The latter makes each trajectory retraceable for -t. 

In order to describe the state space or phase space pattern of the 

trajectories, we need some reference sets in these spaces. There are two 

types of such sets, in fact related: steady state trajectories and total 

energy levels. We shall mention the first now, leaving the second to the 

next Section. A steady state or more formally a singular trajectory is a 

joint name for critical points or equilibria, periodic orbits, almost

periodic, recurrent, and in general non-wandering trajectories: for each 

neighborhood N(xo) there is t such that 

Given li(·) the equilibrium is defined by the relation 

-e x (2.1. 7) 

where xe const is an ·obvious rest position of the system. Moreover, 

(2.1. 7) can equally well be determined by ~ (xe ,R±) = xe, so we have the 

case of a single point representing the entire trajectory. Thus, given 

li(·), the trajectories are unique (do not cross) and hence any trajectory 

from xO F xe may approach x e only asymptotically. Also, apart from a 

few exceptions, which will be mentioned, our equilibria are isolated (no 

other in a neighborhood). 

On the other hand, from (2.1.3) we observe that for given li(·), xO r 

the vector f is tangent to the trajectory concerned at each x(t) = ~(xo ,t) 

This vector slides along the trajectory forming a vector field defined 

everywhere in I'!. except at points where 

f(x,G) = 0 (2.1.8) 

which are called singular points of the field. If, for the u(·) concerned, 

xe satisfies (2.1.7), then ~(xe,t) - const substituted into (2.1.4) yields 

(2.1.8) . Conversely if, given G(t) E U, satisfies (2.1.8), then by 

(2.1.4) it generates (2.1.7). We conclude that (2.1.7) and (2.1.8) are 

equivalent, Le. singular points of (2.1.4) are the same as rest positions 

or equilibria of this system. In particular, o is called zero-

equilibrium or a trivial solution of (2.1.4). In terms of (1.5.19), (1.5.20) 

(2.1.8) becomes 

qi = 0, Q~(q,q) + Q~(q) + Q~(q,~,u) o , i 1, ... ,n (2.1.9) 

or 

o , D~ (q,q) + II. (Ci) - F. (q,q,li) = 0 
~ ~ ~ 

i = 1, ... ,n (2.1.10) 

Similarly in terms of (1.7.10), the equilibria are defined by 
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o o , (2.1.11) 

i=l, ... ,n 

The region in L. which forms a neighborhood of a single isolated equil

ibrium is called local, whatever its size. In particular, when it covers 

L., it will be called globally local. Any region in L. which is not local 

(i.e. includes more than one isolated equilibrium) is called global. 

Among the other steady state trajectories mentioned are periodic orbits 

defined by the fact that there is a number L t 0 such that 

(ji (xo , t + L) 

which may be shown to mean (ji(Xo,L) = xO, making the equilibrium (2.1.7) 

trivially periodic. The number L is then a period of (ji(.) and may be 

represented by n£, £ to, where n is any positive integer. Then for 

n = 1 or L = £, the sub-period £ is the largest and (ji (.) is called 

harmonic or more precisely fundamental harmonic. The reciprocal of the 

period is the frequency f = l/L of the L-periodic motion, in particular 

fn = I/n£, with fl = 1/£ being the fundamental frequency. For n < 1 

we obtain subharmonic (ji(.) with lower frequencies and larger periods, 

while n > 1, i.e. with L = n£ = 2£,3£, ... generates higher harmonic 

(ji(.) with sub-periods and higher frequency, representing overtones to the 

fundamental harmonic. As well known, any periodic curve may be expressed 

in terms of the Fourier trigonometric series of various amplitudes whose 

frequencies are n-multiples corresponding to the overtones. In particular, 

fn = I/n£ = Wn/2'Tf , where wn is the corresponding angular frequency of 

traversing the curve. We have 

x. (t) = ,"" (a cos nw t + b n sin nWnt) , ~ Ln=O n n 
i 1, ... ,N 

where 

and 

b 
n 

(l/n£) 
n£ 
r x. (t) dt o ~ 

n£ 

a 
n 

(2/n£) f x. (t) sin nW t dt 
~ n o 

n£ 
(2/nJl,) f x. (t) cos nW t dt 

~ n o 

are the Fourier coefficients. It also follows from the definition of 

L-periodic orbit that 

(ji(xo,m±) = (ji(xo,m) = (ji(xo,[O,L]) 

and that these sets are compact. 
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The equilibria and the periodic orbits are the only steady state 

trajectories appearing in the state plane R Z For higher dimensions we 

have further steady states: almost periodic, recurrent, and Poisson stable 

trajectories. A trajectory is almost periodic if and only if for suffic

iently small E ~ 0 there is a number L ~ 0 such that 

vt E R 

In non-English literature the name used is quasi-periodic. It means that 

xO returns to itself but only within an approximate distance along the 

trajectory: for each neighborhood N(xo) there is a compact interval 

IcR such that ~(xo ,R) c ~ (N, I) A still weaker property in the same 

direction is the recurrence property of a trajectory defined by the fact 

that for each E > 0 there is L > 0 such that 

vt E R , 

where N E[ . J denotes E - neighborhood of the segment of the trajectory 

between t - Land t + L. It may be shown equivalent (Bhatia-Szego [1 J) 

to the statement that for each two t j' t z E R there is t 3 E R , 

t z < t3 < t z + L , such that 

where is the distance between - - N x,y E R , see Fig. 2.2. Obviously 

an almost periodic trajectory is recurrent but not vice versa. A still 

weaker property is the so called Poisson stability, possibly the most 

relaxed within the class of non-wandering, i.e. singular, trajectories. 

A trajectory is called positively (negatively) Poisson stable, iff for each 

t ER there is some tj > t (tj < t) such that ~(xO,tj) E N(xo) with 

N, some neighborhood of xO , called self-recursive, see Bhatia-Szego [1 J. 

The trajectory is Poisson stable if and only if it is both positive and 

negative Poisson stable. It may be shown, see Nemitzky-Stepanov [lJ, that 

Poisson stability is equivalent to non-wandering, i.e. any singular trajec

tory is at least Poisson stable. 

Fig. 2.2 
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On the other hand, points in t::, which do not belong to a singular 

trajectory are called regular. They are positively (negatively) wandering: 

there is N(xo} and tl such that 

for all t ~ tl (t ~ t l ) • The set of regular points complements the set 

of steady states. 

In terms of the interpretation (1.5.28), the equations (2.1.3) become 

-Di (q,~) - ITi(q,q} + Fi(q,q,u} 

qi 

i 1, ... ,n (2.1.12) 

which, as mentioned in Section 1.5, is the phase-space trajectory equation 

in JR2n for our direct choice of state variables identified with JRN . 

Again as mentioned, such a trajectory could be investigated on n planes 

Oqq. , 
1 

i = l, ... ,n, as long as the calculation is done simultaneously, 

since the functions 

whole vectors q,q . 

Di ("), ITi (.) and F i (.) are coupled across the 

Each of the equations (2.1.12) presents the ith com-

ponent of the instantaneous slope of the phase-space trajectory which is 

identical with iji(xo,JR} and constitutes the first integral curve of both 

(2.1.3) and (2.1.12) through X'0 = (CiO ,gO) E: t::" see Fig. 2.3. 

Fig. 2.3 

By the uniqueness of the trajectories we have their continuous depen

dence on (qO,~O) and thus (2.1.12) defines the field of slopes dqi/dqi' 

i = l, •.• ,n at the regular points of t::,. This field is not defined at the 

equilibria which, for the (2.1.12) representation, are obviously located in 

the hypersurface q = O. Moreover, we observe immediately that all the 
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trajectories must cross q = 0 vertically, as dqi/dqi ~ 00 when qi ~ 0 , 

i = l, .•• ,n The reader may return to Example 1.1.1 for illustration of 

the above. Finally, (2.1.12) implies in the obvious way, that the motions 

along our phase-space trajectory proceed clockwise with time, so that the 

angle e of the radius vector (q,q)T can be taken as a time measure instead 

of t along the trajectory concerned. 

Let us now return to the case of the non-vanishing perturbation 

R(q,q,t) ~ 0, R(q,q,t) ~ O. The right hand sides of the state equations 

for the perturbed (1.5.26) become 

fi(i,a,t) = xn+i ' } 

fn+i (x,a,t) -fi(q,q) - Di(q,q) - ITi(q) + Fi(q,q,u) + Ri (q,q,t) 

(2.1.13) 

and the system is nonautonomous. Similar relations may be immediately 

written for (1.8.6). Consequently the perturbed state equations become 

Xi = fi (x,u,t) , (2.1.14) 

or vectorially 

x = f(x,u,t) (2.1.15) 

Now, the solutions to (2.1.15) will depend upon the initial instant to and 

will not be unique in IJ.. such uniqueness may be however achieved in the 

so called space of events mN+l = mN x m enclosing the augmented work 

envelope IJ. x m . P(·), stationary or not, and such that Given a program 

f(i,p(x,t),t) is locally Lipschitz continuous in x on 

IJ. and measurable in t, through each point (i o , to) E IJ. x R there passes 

the corresponding 

• - -0 + '" -0 + a unique solution curve called mot1-on cf>(x ,to,m ) = Ut't'(x ,to,t), t E R 

of (2.1.15). Mapping the motions into IJ. we lose the uniqueness, i.e. the 

motions may cross each other there and will not be located along the same 

state path. Again, however, the XO ,to - family of motions denoted 

+ IJ. {- -0 + I 0 } cf> (lJ.,lR,m) = cf> (x , to,lR ) x E IJ. , to ER 

gives the first integral of (2.1.15), which is also a dynamical system but 

on the set IJ. x m in the . d N+l 11 tJ.Il\e-augmente state space R Forma y, we 

may in fact introduce the vector of events e = (i,t)T and write (2.1.14) 

in the autonomous format 

de. 

1 
~ 

f. (e,a) 
de ~ 

i 1, ••. ,N (2.1.14) I 
dt 
de 

1 J 
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with the "trajectories" <p (eo, .) : b. x lR -+ b. x lR satisfying the axioms of 

a dynamical system. However, due to the special shape of the last equation 

fN+l == 1 , such a system is "parallelizable" along the time axis, see 

Nemitzky-Stepanov [lJ. Instead of steady state trajectories in b. we now 

have to reference the motions to steady state sets, augmented into b. xR. 

The vector f(x,u,t) of (2.1.15) is still tangent to the motion it 

generates in b. x R, and forms a vector field along such a motion with 

singularities 

'it ~ 0 (2.1.16) 

at the equilibria, which means x const is a solution of (2.1.15). 

It is a point in b. or a half-line in b. x lR. A similar augmentation 

applies to periodic orbits and any other steady states of (2.1.15). We 

shall return to this problem in Section 3.2 and later in the text. 

The augmentation to (1.5.28) in b. x lR of our comments regarding 

(2.1.12) in b. is immediate in view of the above, and it is left to the 

reader. 

Closing this section, let us comment on the case when it is necessary 

to consider in our general model some chain substructures discussed in 

Section 1.4, with the Lagrange equations leading to the format (1.5.37) or 

for independent chains to (1.5.38). Here again we may apply the direct or 

relative choice of state variables. In the first case xj ~ (qj,qj)T is 

the j - chain state vector with the system state represented by the 
-- 11m mT j j j 

Nm-vector x = (x1, .•• ,xN, .•. ,x1' .•. 'xN) and U = (u1' •.• 'ur ) is the 

j - chain control vector. Then letting 
. . b.. . . . . . . 

:fJ (}t,\iJ ,t) = (qJ ,_fJ - IiJ - iP + pJ +:Rh 

we obtai.n (1.5.37) in the state vector form 

~j -j (- -j ) f x,u,t , j = l, •.. ,m (2.1.17) 

For the choice of state in relative coordinates the system state vector x 
is selected a,s an M - vector, M :5 mN, with components 

over the set of relative configuration variables a 
qi -

X1, •.• ,XM running 
\) a 

q., i=l, ••• ,n, 
J 

. 1 \) J = , ••• ,n a,\) l, ..• ,m and the set of corresponding relative 

velocities q~ 
dimension M 

- q~ Then the state equation is that of (2.1.15) with the 

adjusted, depending on how many relative variables are used. 

Usually, however, each chain is controlled by a separate controller, hence 
-j j j) the control vectors u = (u 1' •.• , ur ' j = l, •.• ,m will not be amalga-

mated and we shall write the general format (2.1.15) as 
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(2.1.18) 

Here, the components f 1 ' ••• , fM of the system vector f have a 

different meaning as in the direct choice of state. They can be considered 

relative characteristics, not necessarily expressible in terms of the 

difference between the acting forces per inertia of any 
o V 

The dynamics simplifies if we set up terms in qi - qj 

stipulated, say, as a target. 

pair of the 
.0 . V 

or qi - qj 

chains. 

to be 

Obviously, for independent chains, (2.1.17) are state decoupled, 

i.e. f j (.) becane functions of xj only, but (2.1.18) stay coupled by 

definition. 

EXERCISES 2.1 

2.1.1 Consider successively the models (1.5.19), (1.5.26), (1.7.9), (1.8.3) 

and write the equations for equilibria. 

2.1.2 Explain why the linear system 

i = A(t)i + B(t)u , - N 
XElR 

where A,B matrices of suitable dimensions, is nonautonomous. 

2.1.3 State assumptions under which (1.5.26) and (1.7.9). become dynamical 

systems. 

2.1.4 Consider the trajectory equation (2.1.12) representing the instan

taneous slope of the trajectory on the Oqi <Ii - plane. What is this 

slope at regular points in which the trajectory crosses the axis 

<Ii = O? Sketch a few isoclines - lines of equal slope for a 

family of trajectories. 

2.1.5 Show that f(i,t) is Lipschitz continuous on some ~, if it is 

continuous in (i,t) and linear in i on this set. Give examples 

of continuous functions which are not Lipschitz continuous. 

2.1.6 Can the motions of a nonautonomous system be unique in JRN? 

Describe the difference between the motions and trajectories. 

2.1. 7 Consider the system q + k sin q = 0, k > O. Find all the 

equilibria and sketch the phase-space pattern. 
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2.1.8 Show that the equation x = Ixln, x (0) 0, n E (0,1) , has 

2.1.9 

infinitely many solutions at each x. 

Consider the system (*) x with suitable for 

existence and uniqueness of trajectories on D. . Set x ~ (¢, e) , 
- D. 
f = (f j ,f 2 ) and assume fj,f2 periodic, with period I, in each of 

the variables ¢,e . Project JR2 on a torus and form the dynamical 

system corresponding to (*) on such a torus. HINT: convenient 

representation of the torus: 

{(<p,e) I 0 $ <p < 1, 0 $ e < I} 

in which the pairs of opposite sides q = 0, q = 1 and e = 0 , 

e = 1 are identified, i.e. (0,0), (0,1), (1,0), (1,1) are all 

identified. 

2.1.10 Consider the system 

q (t) E D. c JRn • 

(i) Show that the trajectories may be defined by their pattern 

on the planes Oqiqi' 

(ii) Specify conditions upon D(·), IT(·) defining the equilibria. 

In particular, consider the case n = 1 , 

and the case n = 2 with 

IT(q) = aq - bq3 , qEJR 

ajqj + bjqi + cjq; + a j2 (qj -q2) 

3 ~ 
a 2q 2 + b zq 2 + C 2q 2 + a 2j (q2 - qj) 

where ai,bi,c i > 0, i 1,2, 

to simplify calculations.) 

(Assume same numbers 

(iii) For the cases n = 1 and n = 2 find conditions upon 

0(') ,IT(') guaranteeing that the trajectories form a dynamical 

system. 

2.2 STATE REPRESENTATION OF UNCERTAIN SYSTEMS 

Mechanical systems often work in difficult and unpredictable, or at 

least partially unpredictable, environments (space, under water, bad 

weather etc). They are subject to wear and tear during their work time. 

Moreover, machines are often an expensive investment and must be designed 

flexible enough to serve a range of operations, and thus robust to varying 

parameters. Last, but not least, both the designer and the modeller make 
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errors which must be somehow accommodated within the work regime of the 

machine. All the above factors lead to many system parameters being 

uncertain, even if they are bounded and their range of values is known. 

The sources specified above generate uncertainty in external perturbations, 

payload, and thus also inertia and gravity, but may as well appear in any 

other type of characteristics. Indeed, if the uncertainty appears in 

inertia, by definitions (1.5.21)-(1.5.25), it pollutes all of the charac

teristics. A model which is sensitive to uncertainty is thus not worth 

much in real life applications. We ought to make our control program 

robust against uncertainty and we can do it since, as mentioned, the range 

of uncertainty is bounded and often known. Then we do it via the so called 

worst-ease-design or a game-against-nature, eliminating the uncertainty 

effects either with the controller alone or more economically with an 

adaptive controller and adaptation of some parameters of the system, as 

shown later in this text. 

Let us now return to the Lagrange equations (1.5.26) or (1.8.6), 

initially in autonomous version: 

R(q,q,t) == 0 , 

but insert the uncertainty vector w(t) E W c~s ranging in the bounded 

band W which is known. We obtain 

(2.2.1) 

and 

(2.2.2) 

respectively. One doeS not expect, in most case studies, the elastic forces 

to be polluted by uncertainty. However, the gravity forces obviously are, 

thus so is the potential energy and consequently both the Lagrangian and 

Hamiltonian. Hence the autonomous version: Q~(q,p,t) == 0 of (1.7.10) has 

to be written in the following format 

ClH(q,p,w) 

ClPi 

ClH(q,p,w) QD(- - _) F(- ___ ) 
Cl +. q,p,w + Q. q,p,u,w , 
qi ~ ~ 

1 (2.2.3) 

i l, ... ,n J . 

Obviously in (2.2.3) neither the damping nor the input forces are polluted 

by uncertainty owing to the inertial decoupling, as it happened in (2.2.1), 

(2.2.2). However, they may be, and often are, uncertain on their own 

account which is then also covered by the influence of the vector w(t) 
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Whatever the choice of state variables, direct or relative, we still 

finish with the state equation format 

x. = f. (x,u,w) , 
~ ~ 

or vectorially 

x = fCiC,u,w) 

i = 1, ... ,N (2.2.4) 

(2.2.5) 

The solutions iii (xO , .) of (2.2.5) will now depend upon w ( • ) and in 

general may not exist at all, let alone be unique. This, together with the 

multi-valued control program (2.1.1), see for instance (2.1.1) " which in 

general will apply for reasons mentioned, leads to the nonuniqueness of the 

solutions. For instance, the simple system x = uIX x (t) E JR, with the 

program defined by u = ±IX , produces two solutions x (t) = xOe±t at each 

xO E JR • 

In other cases, both the uncertainty and discontinuities in control 

may produce motion discontinuities which have practical meaning: may 

produce dangerous vibrations, cf. Red-Truong [2J. To accommodate all the 

above, we must use the contingent format of the state equations: 

X E {f(x,u,w) I UEP(X,t) , WEW} • (2.2.6) 

within the full, nonautonomous versions of the motion equations 

(1.5.26), (1.8.6) the non-vanishing perturbations R(·), R(·) are as much 

subject to the uncertainty W as the characteristics and inputs. Moreover, 

they themselves may be the source of uncertainty, being the actions of an 

uncertain environment. The latter role may also be played by the functions 
-R Q (.) in either (1.7.9) or (1.7.10). However, even if uncertain in value, 

the functions R ( .), R ( .), QR ( .) would have to be assumed of known 

character as much as w(·) was. Hence, there is no narrowing in generality 

when considering them all known functions of some unknown vector w with 

the dimension s adjusted. This makes (1.5.26) and (1.8.6) become 

successively 

and 

while (1.7.10) is now written as 

(2.2.1) , 

F(q,q,n,n,w) + R(q,~,n,n,w,t) 

(2.2.2)' 
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<Ii 
ClH (q,p,w) 

. ) 
ClPi 

(2.2.3) , 

1\ 
ClH (q,p,w) D - _ - ~(q,p,U,W) R - - -

Clqi 
+ Qi(q,P,W) + + Qi (q,p,w,t) 

Then the state equations become explicit t dependent 

x = f(x,u,w,t) (2.2.5)' 

with solutions - -0 
<P(x ,to'·) nonunique in b, not only because of w ( . ) but 

also because of the dependence on to. The case is however still covered 

in b, by the contingent format 

WE W} • (2.2.6) , 

It is also called the generalized differential equation or the differential 

inclusion and has a long mathematical and applicational history. The so 

called contingent derivative has been introduced by Buligand [lJ for 

geometric purposes, and has been applied to differential equations by 

Zaremba in the nineteen-thirties. Two decades later, Wazewski [lJ-[4J 

and his Cracow school (Bielecki, Plis, Lasota, Olech) specified sufficient 

conditions for the existence of solutions to such equations and applied them 

to Control Theory. A long sequence of improvements in these sufficient 

conditions followed over the years, until Filippov [lJ gave the simplest 

and most practical result. A very good review can be found in Davy [IJ. 

An elegant geometric interpretation of the application to Control had 

been brought about by Roxin [lJ,[2J. The differential game was formalized 

and developed in contingent terms by Skowronski [22J-[24J, Gutman [lJ and 

Stonier [IJ. Finally the application of (2.2.6) to the deterministic con

trol of uncertainty (the worst-case-design or the game-against-nature) 

belongs to Leitmann, see Gutman-Leitmann [lJ, Gutman [3J, Leitmann [3J,[4J, 

[6J,[7J, and Corless-Leitmann [IJ. For time-discrete systems the topic has 

been studied by Bertsekas-Rhodes [lJ,[2J. 

We shall now briefly describe the basic features of (2.2.6) and (2.2.6)'. 

The vector function f(·) is called the selector of a motion, or t o- family 

of motions respectively, from within the orientor field described by the 

right hand side of (2.2.6) for each t E R+, see Fig. 2.4(a) for the 

autonomous and Fig. 2.4(b) for nonautonomous system. When P(·) reduces 

to a single valued function and w is given, the equations (1.2.6), (1.2.6)' 

reduce to (2.2.5), (2.2.5)' respectively, which are called the selector 

equations. 
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f 
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(bJ 

Givenanyevent (xO,t o) EL',XJR, a solution to (2.2.6)' is an 

absolutely continuous function - -0 + <P(x ,to,·):JR -!:::', identified at 
- -0 -0 <P(x ,to,tu ) = x , which when substituted satisfies (2.2.6)' almost every-

where on JR+. We designate the family of such solutions by K(xO,t o) 

The set of events (x,t) E L', x JR such that x ;P(x o ,to,t), t E JR+ 
- -0 + represents a unique curve in L', x JR. We denote it <p(x ,to,JR) and call 

it the motion from (XO,t o) . 

is called the attainable set at t from 

~(XO,to,[to,tJ) = u ~(xO,to,T)ITE[to,tJ 
T 

t -0 a t from (x ,to) , while the expression 

reachability cone from (XO,t o) in !:::, x JR 

Then the set of events 

is the reachable set 
- 0 + q, (x ,to ,JR ) designates the 

If we choose to leave our model autonomous, we shall have the to-family 

of motions called a trajectory in L'" independent on to. The class of such 

traj ectories will be denoted by K (x o) • 

As mentioned, there are at least several choices of conditions suffic-

ient to the existence of solutions of (2.2.6)' or in particular of (2.2.6) 

in the above sense, that is, to the fact that K(xO,t o) is non-void on 

L', x JR . The cited Filippov [lJ requires that the set on the right hand side 

of (2.2.6)' be obtained by a compact set valued function which is continuous 

and bounded on L', x JR Obviously suitable conditions must be imposed on 

P(·) in order to imply the above. Then, the controlling agent has the 

convenience of picking up any value of lilt) from the corresponding set 

P(x,t), and may use any motion from K(xO,t o) to do the job for him. On 

the other hand, Filippov also showed that, if f(·) is continuous and 

P(·) upper-semi-continuous, there are measurable functions u(·),w(·) such 
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that <P(t) f(<P(t),t,u(t),w(t» for almost every t E R. Hence the 

agent can always find control functions that allow us to represent 

¢(xO,t o '·) in ~ x ~ as unique solutions to the selecting equations 

(2.2.5)', and hence (2.2.6)' as a family of (2.2.5)'. Thus, we have 

K(xO,t o ) non-void and equipped with a definite differential structure. 

The programs P(·) which allow the above will be called admissible. We 

shall assume all programs admissible, unless otherwise specifically stated. 

EXAMPLE 2.2.1 (Stonier [lJ). A simple example of (2.2.6) is obtained 

letting the state equation (2.2.6) be the scalar dynamical system 

X E {Z = -wu I u = p(x) :: x, w E [1,2J} . 

The attainability set becomes 

{ 

( 0 -2(t-t o ) 0 -(t-t ) xe ,xe 0), 

( 0 -(t-to ) 0 -2(t-t ) xe , xe 0), 

x ;:: 0 

x < 0 

Considered for all t;:: to' it carries on all the available motions of the 

system. o 

EXAMPLE 2.2.2 (Hajek [lJ). Consider ~ E {z =Au -w I WE W} with 

X (t) E RN, A being some N x N matrix, and u = x • 

ability set at t is 

{ 
t 

-AT - -
= few dT I w E 

to 

For any w(·) the motion is defined by 

- 0 At r -0 <P(x ,to,t) = e I x t 1 -AT - f e W(T) dT 
to -

Then the reach-

obtainable from the selector equation x 

tion of parameters. 

Au w by the method of varia-

o 

EXAMPLE 2.2.3. Another example is obtained modifying Hajek [lJ. We let 

the selector equation be scalar, 

x = uw , 

with U : lui s u, W: Iwl s w, X O = x(to ) = o. Given P(·) which 

specifies unique admissible u I we ask where the uncertainty w can 

possibly get the system at the time t? The cGlnstraint on w yields 
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Conversely, any point x such that Ixl ~ wt can be obtained using 

r x 
for o ~ ~ Ix! r;zr , T 

wiT) 
0 for Ixl < T ~ t 

Thus the available set at t from ° is x 

¢(xO,to,t) = hi Ixl ~ wt} 0 

From both, the nature of (2.2.6), (2.2.6)' and the examples, one can 

conclude that the contingent equations have an alternative representation 

as differential inequalities: 

min f(x,u,w,t) ~ ~ ~ max f(x,u,w,t) 
u,w ii,w 

holding for u E P(x,t) , W E Wand each t E JR+ . 

EXAMPLE 2.2.4. Consider the scalar contingent equation, 

X E {z = uwx 2 I u E [-l,lJ, WE (1,3)} 

Hence also or L 
X < x < 3x 2 The selector 

(2.2.6) " 

at 

u = 1, W = 1 gives x/x 2 = 1 Integrating 2 dx/x = dt we obtain 

x (t) = xO[xo (to - t) + lrl whence 

xO[3xo(t-t u) +lr 1 < x < xO[xo(t-t o) +lr 1 , 

or 

see Fig. 2.5. 

t 

Fig. 2.5 

o 
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If it is necessary to consider some chain substructures with separate 

dynamics, the contingent format remains the same except for the selector 

equation replaced by (2.1.17) or (2.1.18) depending whether the choice of 

state variables is direct or relative. 

The alternative dynamics for uncertainty is obtained by making the 

uncertainty additive and the system linear in control. In general terms, 

such dynamics is formalized as the Leitmann's model of an uncertain 

dynamical system 

x = [A(x,t) + OA(x,t,F)Jx + [B(x,t) + OB(x,t,s)Ju + C(x,t)w (2.2.7) 

where r, 5, ware uncertain var iables assumed to be functions of x and t, 

whose values lie in known closed and bounded sets of suitable spaces: 

r (x, t) ERe JRs , k 5 (x, t) ESC JR , w(x,t) EWe JRs . 

Introduced in 1976, see Gutman-Leitmann [lJ and the above cited works, 

the model had been extensively developed both theoretically and in applica

tions. The latter lead to the wide use of the Leitmann-Gutman controller 

which we shall discuss in Chapter 5. The basic feature here is the nominal 

system - an unperturbed (2.2.7), 

.:. 
A(x,t)x + B(x,t)u (2.2.8) x 

whose motions have a stipulated performance from which (2.2.7) should not 

basically differ under the perturbations OA,OB and w. The matrix func-

tions A ( .), OA ( .), B ( .), OB ( . ) and C ( . ) are such as to secure the 

existence of motions of (2.2.7) through each (RO,t o) E ~ x JR , given 

r,s,w and u 

If the so called matching conditions are met, that is, there are 

functions D(x,t,r), E(x,t,s) and F(x,t) such that OA = BD, OB = BE 

and C BF, then (2.2.7) becomes 

x A(x,t)x + B(x,t)u + B(x,t)c(x,t) (2.2.9) 

with c(x,t) = Dx + Eu + Fw amalgamating all the uncertainties. Physically 

it means that the uncertainty is within the range of input. This lumped 

uncertainty is assumed continuous in x, measurable in t and bounded by a 

known function: 

ilc(x,t)li ~ p(x,t) (2.2.10) 

with the bound p depending also upon the ranges R, Sand W of r,s,w 

respectively. Moreover all three iiA(x,t)il, liB(X,t)ii, p(x,t) areassumed 

to be majorized by a Lebesgue integrable function of t. One of the advan

tages of the model lies in the fact that the control program P(·) for u 
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may include uncertainty as well. The matching conditions can be relaxed, 

see Barmish-Leitmann [lJ, but even then there remains a class of mechanical 

systems which would not satisfy them. The model is, however, wider than a 

similar model of the "system under persistent perturbations" developed by 

Barbashin [lJ. In the case of our (2.2.1) or (2.2.2) it would require the 

uncertainty lumped in R or R and both F ( .) and R (.) to be linear in 

ii and w respectively, thus excluding the cases of uncertainty in inertia, 

gravity and damping as well as in the actuator gears. 

The adaptation of the contingent format (2.2.6) to the Leitmann model 

(2.2.7) can be found in Goodall-Ryan [lJ. 

EXERCISES 2.2 

2.2.1 Consider the scalar system 

x = x + urx + wx , W E [-l,lJ 

governed by the program P(·) defined by u = ±rx . write the 

contingent format of the state equation, determine the instantaneous 

attainability and reachability sets. 

2.2.2 Do you know sufficient conditions for the existence of solutions to 

(2.2.6) other than those by Filippov? 

2.2.3 Verify that x(t) = xO ± t are two motions of the contingent 

equation x E [-l,lJ Are there any other motions? What is the 

attainability set at some t? 

2.2.4 Find equilibria of the system 

wE[1,2J, U E [0,1] . 

2.3 ENERGY SURFACE. CONSERVATIVE FRAME OF REFERENCE 

The performance of the motions in state space can be measured and the 

state space pattern described in terms of a single scalar function, the 

total energy of our mechanical system, which is the stationary Hamiltonian. 

Indeed, as such, the energy is a point-function over !::. and mapping its 

levels into !'!. gives a perfect frame of reference for investigating the 
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behavior of state space motions. The topology of energy and power (= time 

derivative of energy) over ~ is the natural basis not only for the motion's 

analysis, but their synthesis (system design) and control, see Skowronski 

[4J-[9J, [12J-[18J, [20J, [30J-[44J, Koditchek [lJ,[2J, Takegaki-Arimoto 

[2J, Volpe-Khosla [IJ. Effective control programs can be designed using 

both the energy and the power of the system in various branches of control: 

feedback, adaptive, coordination, dynamic games, etc. The reader will find 

many of these controllers later in this text. This Section describes the 

map of energy levels on ~ obtained directly from the said topology of 

energy on this set. 

Observe that the total energy is the sum of kinetic and potential 

energies and since the potential forces, particularly gravity, may in 

general include uncertainty, so does the total energy E(q,q,W). We shall 

later refer such energy and the corresponding power to its nominal values 

(without uncertainty), E(q,q), that is why the systems without uncer

tainty (2.1.4), (2.1.15) form the base for describing the reference frame 

in this Section. Since we want to control our system motion against all 

the options of the uncertainty, the nominal values of energy for reference 

are obtained by substituting w* which extremizes E (q, q, w) • In particular 

it means minimizing E(q,q,w) if we want to keep the motions concerned 

below E-levels or maximizing E(q,q,w) if we want to keep them above 

E-levels on ~. The cases will be described in detail in Section 3.2. 

Consequently we consider here E(q,q) T(q,q) + V(q) , with the 

obvious alternative notation of E(q,p) and E(x). Observe that in order 

for the map of the E-levels over ~ to be an effective reference frame in 

obtaining the full dynamic state information on the system behavior, we 

need both terms of the sum T + V • The potential energy alone gives only 

static information on the configuration of the system. This is in spite 

of the fact that we may use the potential energy generated applied forces 

as feedback controllers, see cited Takegaki-Arimoto [2J. 

To obtain the hypersurfaces E(x) = const we obviously use the energy 

integral of the conservative subsystem of our system. Let us make a few 

comments regarding such a subsystem. 

Since the potential energy is the negative of potential, then by 

(1.5.16) the generalized potential forces are defined by the partial deriv-

atives, 

aV(q) 
-~ 

i 1, ... ,n , (2.3.1) 
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whence the potential energy is specified by 

q. p 
V(qO) - L. f ~ Q. (q)dq. 

~ ° ~ ~ 
qi 

V(q) (2.3.2) 

The function V ( .) is assumed defined at least on /::, , single valued and 
q 

smooth to the degree required by (2.3.2) and whatever smoothness is needed 
p 

for Qi(·). Thus in most cases V(·) is taken as analytic. 

By (2.3.1) and (1.5.23) the potential characteristics become 

(2.3.3) 

and thus also 

(2.3.4) 

The potential force Q~ is composed of gravity Q~ and spring Q~, as 

indicated in (1.5.27) but may be augmented to include the designed compen-

. f 'h' . GC .. KC boh h sat~on orce e~t er ~n grav~ty Qi or ~n spr~ng Qi or t. Suc 

compensation forces added to Q: change the potential energy (2.3.2) and 
~ 

therefore may act as part of a controller. Such a role is particularly 

effective in changing the equilibria and thus the global state space 
G GC 

pattern. The gravity forces Qi' Qi are nonlinear by nature, often 

trigonometric functions and as such power series developable with some 
K KC 

cut-off approximation, see our Example 1.1.1. The spring forces Qi' Qi 

are often analytic functions as well, with the same possibility of 

truncating their power series representation. We discuss the problem later. 

The subsystem of (1.7.10) or (1.5.20) which contains only kinetic and 

potential forces is conservative. Indeed, consider (1.7.10) and assume no 

effect from external forcing or damping forces, i.e. Q~(q,p) = 0 , 

F) R(- - ) ( 3 1) Qi (q,p,ii - 0, Qi q,p,t - o. Substituting 2.. it becomes 

i l, ... ,n . (2.3.5) 

On the other hand, formally 

H• (- -) = \ [dH(q,P). dH(q,P). 1 
q, p L.i dq. qi + d p. 

~ Pi~_ 
(2.3.6) 

Substituting (2.3.5) into (2.3.6), we obtain H(q,P) o or 

H(q,p) = const , (2.3.7) 

and, since the stationary Hamiltonian was equal to the total energy, 

89 



www.manaraa.com

E(q,q) = const, making (2.3.5) conservative with the total energy repre

senting the first integral. 

In terms of the Lagrangian equations (1.5.13) or the Newtonian format 

(1.5.20) the conservative system (2.3.5) becomes 

p -
Qi (q) i = l, ... ,n , (2.3.8) 

or 

L. M .. (q)q. + r~ (q,q) - QP (q) = 0 , 
J ~J ~ • 

i = 1, ... ,n (2.3.9) 

respectively. Consequently to (2.3.7), whatever the amount of E(q,~) is 

used by the kinetic energy in motion, it is balanced by V(q) and 
-P -P 

restituted by Q. Consequently the components of Q are called 

restitutive (restoring) forces as an alternative name to potential or 

conservative forces. Note that the centrifugal-Coriolis forces hide in 

H(q,p) in the passage between (2.3.9) and (2.3.5) and do not affect the 

change of energy. They are thus called energy neutral. forces or traditors, 

see Duinker [lJ. 

The assumed single valuedness of V(·) means that restitution tracks 

back precisely the graph of usage, see Section 1.5. It also means that 
P Qi,TIi are single valued which, particularly with spring forces, corres-

ponds to elastic behavior. 

In hydraulic systems, the restitutive device of our type means either 

the adiabatic compressiblity of a fluid or the perfect elasticity of a 

container. We see both in action when filling a balloon with such fluid. 

Energy is stored because the fluid is compressed and because the balloon 

is stretched. It changes back to the kinetic energy when we let the fluid 

escape. Then the decompression of the fluid and the shrinkage of the tank 

is supposed to trace back the graphs of compression (adiabatic) and 

stretching (elastic) respectively. 

Such modelling is not entirely realistic. There will be hysteresis 

in bodies, a non-adiabatic compression in pneumatic or hydraulic suspension 
K etc., so we should apply a multi-valued function Qi (.). Then the system 

would cease to be conservative. However, one may maintain the restitution 
K property and thus single valuedness of Qi (.) and V(.) by shifting the 

non-elastic phenomena to the damping characteristics which complement Q~ 
~ 

in our overall model, see Skowronski [24J. without going into details, 

let us say that this procedure is physically justified and often used, see 

Christensen [lJ. 

90 



www.manaraa.com

Substituting 
D _ 

Qi = ° , into (1.7.10), (1.5.20), we have 

obtained the state representations of the conservative system. Substituting 

the same into the equilibria equations (2.1.9), (2.1.10), we see that the 

equilibria of the conservative system are defined by 

Q~(q) = ° , i = 1, •.• ,n , (2.3.10) 

that is, by vanishing of the potential forces. The above implies 

immediately 

q. = ° l. 
i 1, ... ,n . (2.3.11) 

Conversely, (2.3.11) implies zero acceleration, that is, motion with con

stant velocity. But isoZated roots of (2.3.10) have zero-velocity, that 

is, they are rest positions or equiZibria. Consequently we consider 

(2.3.10), (2.3.11) equivalent. Obviously the compensation terms in Q~ 
l. 

or 

TIi may shift the equilibria, as mentioned. In turn, except for the 

influence of the perturbations R(q,q,t) and input F(q,~,U). the equi

libria coincide with those of (1.5.26) defined by (2.1.10). Indeed, the 

viscous or Coulomb type of damping used in most of our case studies implies 

that there is no damping whenever there is no motion, that is, at rest: 

vw,q i 1, ... ,n (2.3.12) 

Moreover, there are also no Coriolis or gyro forces when the system rests, 

r i (q,O,w) :: ° , vw,q, i = 1, ... ,n . (2.3.13) 

Also, as we deal with the reference system, we want it free from input 

and perturbations: F(q,q,w,u), R(q,q,w,t) :: 0. Substituting the latter 

and (2.3.12), (2.3.13) into (1.5.26) we obtain (2.3.11). A similar argu

ment applies for (2.3.10). 

Observe further that (2.3.1) and (2.3.10) together imply that the 

equilibria lie at the extremal points of the potential energy surface 

V : v = V(q) in the space JR XIR n over the set t,. • At the same time 
q 

the regular points of t,. are the non-extremal points of V. The surface 

V is single-sheeted and smooth, since V was assumed single valued and 

continuously differentiable. There is little chance that any element of 

the mechanical system may become an energy sink with negative storage. 

Thus there is no narrowing in assumption that, if V admits negative values 

at all, they are bounded. with the latter and with the origin placed at an 

absolute minimum of V over the closure t,. , we can always adjust the free 
q 

constant V(qO) of (2.3.2) such as to obtain V positive semi-definite, if 

the minimum is not single, or positive definite, if it is. 
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Since the equilibria coincide with the extrema of V, they are 

isolated (see our comment in Section 2.1) and there is a finite sequence 

of them in the bounded t:,. See Fig. 2.6. 

As stated by Lagrange, proved by Dirichlet and mentioned before, the 

isolated minima of V are Diriahlet stable. We use this term in the plain 

meaning of elementary physics in high school. The reader may as well bring 

back memories of a ball returning to a stable position at the bottom of a 

convex two-dimensional V. 

v 
THRESHOLD 

Fig. 2.6 

p 
The matrix (-aQi/aqj) is called the funational aoeffiaient of 

restitution of the system. The restitution will be said to be positive if 

the matrix is positive definite, that is, all its principal minors are 

positive, which suffices for a local minimum. Thus we have what may be 

called the Diriahlet Property: An equilibrium is Diriahlet stable if the 

restitution in its neighbophood is positive. 

p 
Note that the matrix (-aQi/aP j ) may be immediately replaced by 

(an. laq .), wi thout a change of conditions. 
~ J 

The sections V(q) = constant = V c of V are the potential energy 

levels zc' with Vc E [O,Vt:,),Vt:, = sup V(q) Iii E t:,. We shall assume that 

each Zc separates a region of V from its complement. Note that Zc may 

be disjoint so that the region separated may be disjoint as well. 

The level corresponding to the absolute minimum of V on t:, is called 
q 

basia and the corresponding equilibria (one or more) the basia equilibria. 
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We have placed the origin of R n at a basic equilibrium and arranged for 

the constant V(qo) of (2.3.2) to be such that V(O) = O. This means 

o , i=l, ... ,n, (2.3.14) 

and 

i=l, ... ,n (2.3.15) 

in agreement with the zero-equilibrium of Section 2.1. Then there is a 

neighborhood ~ c ~ of the origin on which V(q) increases in 
qv q 

The pattern continues for all qi up to the lowest level 

corresponding to the first relative maximum or inflection of V with 

respect to some qi. The part of this level neighboring 0 is called the 

potential energy threshold, denoted Zcv,vc = Vcv The threshold separates 

a simply connected region from the rest of V, and is called the potential 

energy cup (basic), denoted Zv 

see Chapter 3. 

It is obviously subject to compensation, 

Consider the continuous Vc - family of levels below Zcv' that is, for 

Vc S vcv Such levels have parts enclosed in Zv' see Fig. 2.6, these 

parts form a nest about 0: they do not cross one another and each of them 

separates a simply connected region of V. The threshold itself is the 

upper bound of the family. Indeed, from Morse [lJ we know that opening of 

the level surfaces is possible only at saddles in which specify the 

determines ~ threshold. The threshold projected orthogonally into ~ 
q qv 

The projection of the said family of levels behaves identically in 

the map is isometric (distance preserving) . 

~ , 
qv 

By Dirichlet Property we may pick up other stable equilibria. Moving 

the origin of R n by a simple transformation of variables, we may repeat 

our construction of the local cup about any other Dirichlet stable equili

brium. We then obtain a sequence of z~, k = O,l, ... ,M<oo, finite since 

~ is bounded, with V = 0 referring to the basic cup. Correspondingly 

there is a sequence of ~k It is shown, Shestakov [1 J, that the stable 
qv 

equilibria and thus ~k are separated by the Dirichlet unstable equilibria 
qv k=l 

Obviously the threshold of Zv will be higher than that of 

and ~~~O, but on the other hand it may not. It depends upon the 

(maxima) . 
k=O 

Z 
v 

case scenario. 

Can we estimate or change the size of ~k ? Evidently, there is the 
qv 

possibility of a single equilibrium occuririg in ~ when the function Q~ 
q 1 

or II. 
1 

are "hard in the large", that is, with positive partial derivatives 

yielding a monotone increase on ~ . 
q 

Then no threshold ever appears and 
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Zk stretches indefinitely yielding ~ = ~ If it is not the latter 
v ~ q 

case, one encounters at least two equilibria. So there is at least one 

that neighbors the basic equilibrium. Thus the threshold must appear, if 

not sooner, then at this neighboring equilibrium. Since the positive 

coefficient of restitution suffices to attain the minimum at any equilibrium, 

thus conversely such a minimum is necessary for positive restitution. 

Shestakov [lJ proved that the neighboring equilibrium cannot be a minimal 

point again, so the positive restitution is contradicted there. Then, 

provided the threshold crosses over the said equilibrium which is Dirichlet 

unstable, the positive coefficient of restitution defines 

proviso must hold for N = 2, but quite often holds for 

~ 
~ 

N > 2 

The above 

Since 

V(q) is symmetric by definition, the basic cup is always symmetric and our 

proviso holds for the basic cup for N > 2. We thus have the following. 

Property of Restitution: The region ~ is defined by the positive 
~ 

aoeffiaient of restitution with aaauraay to within the distanae between the 

threshold and the nearest unstable equilibrium. 

Note here that the equilibria and the thresholds are subject to com

pensation control. 

We have also an alternative, physically motivated criterion for ~ 
~ 

By the very nature of equilibrium, when a motion goes outwards from a 

Dirichlet stable equilibrium, the restoring force must tend towards this 

equilibrium and vice versa: the sense of motion and restoring force vectors 

are opposite, see (1.5.34), 

i = 1, ... ,n (2.3.16) 

yielding in turn the so called restitution law 

\ p(-) -P(_)T - 0 L· Q. q q. = Q q .q < , 
~ ~ ~ 

q 'I 0 • (2.3.17) 

Correspondingly in terms of characteristics, the above becomes 

L. II. @q. 
~ ~ ~ 

q 'I 0 • (2.3.18) 

Since (2.3.16) is implied by the stable equilibrium, they are necessary 

conditions for the minimum. Consider (2.3.16). At the neighboring unstable 
p 

equilibrium, all Qi cross zero and as they are smooth functions must gain 

the opposite sign, which contradicts (2.3.16). Contradicting the necessary 

conditions produces the opposite property, hence the boundary of the set 

defined by (2.3.18) determines the threshold: 

ll(q)Tq = 0 . (2.3.19) 
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In multidimensional spaces, however, it may prove difficult to find 

the lowest unstable equilibrium (saddle) for a cup. Here is the technique 

which may help. The saddle appears at the opening of the levels Zc (see 

Morse [lJ) and these levels tend to open at arcs where the growth of V(q) 

slows down, that is, where the gradient VV(q) ~ 0 is minimal. A curve 

on V that passes through the minimum of zk and minimizes IVV(q) I inter
v 

sects Z at (2.3.19) and determines the saddle. In order to find such a 
cv 

minimizing curve, we use Lagrange multipliers. The function to be minimized 

is L. (<lV/<lq.) 2 
~ ~ 

subject to constraints V. Hence the Lagrange's function 

is L.(<lV/<lq.)2 
~ ~ 

AV(q) Equalizing partial derivatives to zero, we obtain 

o , i,j 1, ... ,n • 

Eliminating the parameter A, we have the equation of the curve 

which passes through (<lV/<lq.) = 0 . 
~ 

Let us return now to the sequence of cups zk. Since the cups and 
v 

their corresponding thresholds are defined, so is the highest threshold 

defined as the maximal over bounded I'!. • Let ZL be the infimum of the 
.q 

levels Z located above the highest threshold. Then ZL separates a region 
c k 

enclosing all the cups Zv from the rest of V. This region projected into 

I'!. defines the set I'!. which encloses the union of I'!.k , k = O,l, •.• ,m • 
q qL qv 

As there are no thresholds in I'!. - I'!. L ' this region forms a structure that 
q q 

resembles a local cup, about 00 and will be thus called the potential 

energy cup in the Zarge. 

EXAMPLE 2.3.1. We consider a simple single-DOF system, being an artific

ially designed perfect subcase of our discussion but matching many 

applications. Let II (q) = aq + bq3 + cq5, q (t) , b E R; a, c > 0 , with 

certain limitations imposed below on the "softness coefficient" Ib I. We 

have immediately 

V(q) = t aq2 + f bq4 + t cq6 

The equilibria are obtained from <lV/dq 

yields 

II (q) 

(0) 
0 

(1) (3) [-b± Ib2: - 4ac f q q ,q 2c 

(2) (4) _ [ - b ± Ib 2 - 4ac t· q ,q 
2c 

(2.3.20) 

q(a+bq2+cq4) o , which 
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For b? 0, the characteristic IT is hard and there should be only one 

Dirichlet stable equilibrium (basic) q(O) = 0 Indeed, by the formulae, 

the values q(l), ... ,q(4) are all imaginary. The same situation occurs 

for b < 0 but sufficiently small in its absolute value, namely b 2 < 4ac 

On the other hand, for b < 0 with b 2 > 4ac we have all five, and with 

b 2 = 4ac, three equilibria q(O), q(l) = q(3),q(2) = q(4). The greater is 

the softening ibi the more equilibria appear. However ibi is limited 

from above by the physical requirement that (2.3.20) must be positive for 

all q t- 0 . 

In order to analyse (2.3.20) in some detail, we let a = c = 1 , 

b = -2.1, which yields 

1 2 4 1 6 V(q) = 2 q - 0.53q + 6 q , 

av/aq = IT(q) = q _ 2.1q3 + q5 , 

a2v/aq2 = 1 _ 6. 3q2 + 5q4 

IT(q).q = q2 

The results of calculation are in the following table: 

q -1.17 -0.85 0 0.85 

V(q) 0.12 0.15 0 0.15 

""- min / max ~ min / max 

av( ) aq q = IT(q) 0 + 0 0 + 0 

a2v/aq2 1. 74 -0.94 1 -0.94 

IT(q) .q + 

(2.3.21) 

1.17 

0.12 

'\ min / 
0 + 

1. 74 

0 

EXAMPLE 2.3.2. We turn now to a "real life" case adapted from Blaquiere 

[lJ, where also literature on the problem is quoted. The case is that of 

betatron oscillations of particles in a vacuum chamber of a particle 

accelerator, the oscillations described in-the-mean by the following model, 

Hagedorn [1 J : 

(2.3.22) 

where Sl (t) , S2(t) E F are the radial and vertical deviations from a 

reference orbit (reduced to an equilibrium), a is a coupling coefficient 

and Ql,Q2 are respectively the numbers of betatron oscillations experienced 
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by variables ~1'~2 during each revolution of particles in the vacuum 

chamber. The storage function (potential) used, Hagedorn [lJ, is such as 

to lead to 

To simplify matters, we introduce the following transformation 

a a 
ql 2" ~l , q2 2" ~2 

Q2 Q2 

and let )1 = Q2/Q2 
1 2 Then 

2a2 
= V(ql,q2) 

2 2 2 1 3 
-6 V(~l '~2) )1ql + q2 - (qlq2 - "3 ql) 
Q2 

For the equilibria we require 

dV 
2)1ql 

2 + 2 = 0 
dV 

2q2 (1 - ql ) 0 
dql 

= - q2 ql dq2 

These two curves cross at the points: 

(0) (0) 
= 0 , 

(0) 
0 

(1) (1) 
= -2)1 , 

(1) 
0 q ql q2 q : ql q2 

(2) (3 ) ( 2) (3) 
1 

(2) (3) 
= ±(1+2)1)l:l q , q ql ql q2 ' q2 

The equilibria are shown in Fig. 2.7. We may verify easily that 
(0) 

is q 

the absolute minimum and thus the basic potential energy level while the 

others are saddle points. The extrema are V(q(O)) = 0, V(q(l)) = ~)13, 
3 

V(q (2)) = V(q (3)) = )1 + 1-. If we again shall make our life easier by 

assuming )1 = 1, which does no harm to the betatron, Blaquiere [1 J, then 

we obtain the threshold joining all three saddles at Vcv = 4/3. The 

threshold mapped into ]R2 produces the boundary 

or 

[ 2 2 J 3q2 - (ql + 2) (ql - 1) = 0 

made of three straight lines: 

(2)-(3)ql=1 
1 

(1)-(3) q =- -(q +2) 
2 /3 1 

see Fig. 2. 7 . 

Obviously the triangle (1)-(2)-(3) bounds the 6qv about 
(0) 

q o . 
Around this basic cup, we find three hills on one threshold level and 

beyond it, another three cups - open definitely. Observe that the picture 

is invariant under rotation by 2TI/3 o 
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Fig. 2.7 

EXAMPLE 2.3.3. Let us now augment the two pendula of Example 1.1.2 to 

several such pendula with the motion represented by n point-masses mi 

rotating along a circle shown in Fig. 2.8. The masses are subject to 

gravity t sin qi and elastic coupling between each two Kij (qi - qj) = 

k ij sin (qi -qj) with damping ignored. This gives the motion equations 

i 1, ... ,n . 

IT IT 

(a) (b) 

Fig. 2.8 
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o 
(0 ) 

o 
(b) 

Fig. 2.9 

o 
(e) 

Let us first repeat the case for n = 2. It is seen in Fig. 2.8(b) 

that the two point masses are pulled towards each other by the elastic 

coupling, whence by (2.3.18), ° is a Dirichlet stable equilibrium. There 

are three more obvious equilibrium positions (ql,q2) = (O,TI) , (TI,O) and 

(TI,TI) . If one of the masses is at ° and the other at TI, then any 

deflection of one of them from its position makes the mass at TI pulled 

down towards ° by both the spring and the gravity. Hence (O,TI), (TI,O) 

are unstable. If both masses are at TI, any deflection from this equili

brium makes them fall to 0, so (TI,TI) is unstable as well. Apart from 

the above, we can have some instantaneous equilibria produced by the balance 

between gravity and the coupling spring forces. Indeed, it is seen from 

Fig. 2.8(b) that when both points are located on the upper semicircle, the 

spring is pulling them towards TI while gravity forces them towards 0. 

It is intuitively obvious, but may also be shown rigorously, that such 

equilibria are unstable. Hence the only energy cup existing is located 

about 0, up to the first unstable equilibrium. 

Consider now the case n = 3 shown in Fig. 2.9. Here also, ° is an 

obvious stable equilibrium and there are no other stable equilibria, so 

that we still have a single energy cup. To show this we follow the argu

ment of Vaiman [lJ and look at the points m1 ,m 2 ,m 3 ,0 as vertices of some 

quadrangle inscribed in the circle. We can always find two arcs, smaller 

than or equal to TI/2 such that the sum of two reciprocal angles equals TI 

Consequently, there is at least one point mass, at one of the vertices, 

such that the corresponding angle is below TI/2. Such an angle opens an 

arc, smaller than 180°, on which the other three vertices are located. 

Hence we can always find a semicircle on which there is only one point 

mass. For instance, consider the semicircle A,m 2 ,B in Fig. 2.9(b). 
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The diameter enclosing such a semicircle separates the point mass concerned 

from the other two and the point O. See the diameter AB separating m2 

in Fig. 2.9(b). Suppose there is an equilibrium as shown in Fig. 2.9(c). 

We may show that it is unstable. Indeed, consider forces acting upon m2 

and move them to the centre C. They are the gravity m2g, and the elastic 

couplings with amplitudes kl2 and k 23 . As they successively act along the 

directions cO,Cm I ,Cm 3 ' they will be left on one side of AB. Hence their 

resultant also must be on this side of AB. Since we discuss equilibria 

the tangential component of the resultant acting upon each of the masses 

vanishes and the resultant force R2 on m2 is directed radially away from 

C. Consequently the equilibrium defined for ml ,m 2 ,m 3 is unstable. 

o 

Let us now introduce the space h x JRN, N = 2n, and consider the 

surface H in h x JR N generated by the function h = E (q, q) over I'!. C JRN , 

that is, confined to the set Z ~ ~O,hl'!.) x I'!. , hI'!. = sup E (x) Ix E I'!. For 

tangibility we shall use h = E(q,q), but there is no difference to our 

further discussion whether we follow E(q,q) of (1.5.26) or H(q,p) of 

(1. 7.10). The set Z is bounded since 1'1 is bounded, see Fig. 2.8. 

Next, we introduce a level surface of E(')' Zc ~ {(h,q,q) EzIE(x) 

constant = hC} . We say hC is a regular value if (h,q,in E Zc implies 

It follows from Wilson [1] that almost all values of hare 

regular. It follows from the derivation of (2.3.7) that the trajectories 

of the conservative (2.3.5) or (2.3.9) form a hC- family of curves on the 
-0 0 0 T surface H. To every N - tuple x = (xl"" ,XN) of the constants of 

integration of (2.3.5) in I'!., there corresponds a value hc E [O,hl'!.) which 

defines some zc' called alternatively the integral level. The inverse 

map is obviously set valued. 

obtain the surface H. 

Nevertheless, exhausting all we 

Let us project orthogonally the hc - family of levels onto I'!.. For 

each level we obtain a set EC in I'!.. It follows from the implicit 

function theorem of Calculus that, given regular hc ' the corresponding 

EC is an (N-l) - dimensional hypersurface in JRN , with the degree of 

smoothness determined by the smoothness of H. Such a surface is called 

topographic by analogy to the geographic card images of the height levels 

in a terrain. According to the above, the first integral of the conser

vative system (2.3.5) is accommodated by the family of EC'S in I'!., each 

EC representing a trajectory picked up by specifying the initial state 

xO = (qO,~o) . The trajectories do not cross, neither do the levels, each 

defined by E(q,q) = constant = hc 
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The shape of H is obviously determined by the fact that its generator 

h = E(q,q) is represented by the sum T(q,q) + V(q). By (1.5.6), T(·) 

is a single valued, smooth, positive definite function, even and symmetric 

with respect to the hyper-plane q = 0 in Z. For all practical purposes 

we can envisage it as an (n-l) -dimensional extension of a parabola. Since 

the surface H is obtained by superposition of T (q, q) and V (q), the 

latter analysed in terms of the surface V, it is the superposition of the 

parabolic T over V along a bottom line of the latter, see Fig. 2.10. 

There are no changes in the notions introduced for V except for expanding 

them along the additional set of velocity axes ql' ... '~ or momentum axes 

PI' .•. 'Pn' and thus adopting slightly different notation. 

T 

q. -----------
Fig. 2.10 

The equilibria have been shown to coincide with the extremal arguments 

of V. Since T (q, 0) :: 0, they also coincide with the extremal arguments 

of E(q,q) thus underlying the extrema of H. By the shape of T(q,q) 

the Dirichlet stable equilibria of V define minima of H with respect to 

both V and T, and the Dirichlet unstable equilibria define the saddles 

of H, that is, maxima of V and minima of T. The iso-energy levels of 

Ze are defined by the cuts T (q,~) + V(q) = constant = he of H and the 

corresponding topographic surfaces Ee accommodate trajectories of (2.3.5) 

starting there, and only these trajectories. This is what we meant when 

saying that the conservative system (2.3.5) serves as the conservative 

reference system. Since both T and V are positive definite functions, 

E is positive definite and again we let the origin of Z at the basic 
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equilibrium, corresponding to the absolute minimum of H and to the basic 

total energy level, briefly basia energy level h = ° . 

As the basic energy level is a double minimum of both V and T, there 

is a neighborhood liE c II of the basic equilibrium on which E increases 

in I ql I , ... , I ~ I , I Cr 1 I , ... , I ~ I. Since T has no extremal values except 

0, it is only the potential energy threshold which may break down the 

increase. To any potential energy level V(q) = const, there corresponds 

some level Zc in H. Thus the potential energy threshold becomes the 

energy threshold ZCE : E(q,q) = hCE • Correspondingly, the basic potential 

It corresponds to 

is an isometric image of 

energy cup Zv becomes the basia energy 

by the fact that the boundary a~E = ECE 

ZCE. Since the thresholds of V and H coincide, ECE is that EC which 

passes through the boundary of ~qv and since both EC and ~qv are defined, 

the ECE is defined as well, as so is ~E. The set ECE is called the 

separating set (generalized separatrix) of ~E. Hence, if the potential 
p 

threshold does not appear: ~ qv = ~ (l inear or hard Q i ), then the energy 

threshold ZCE never appears either, and ~E ~. 

We may now describe the interior of ZE. Similarly to its potential 

counterpart Zv' it consists in the continuous h - family, h € [O,hCEJ , of 

components of Zc nested about the basic equilibrium, each separating a 

simply connected region from the rest of H. The surfaces EC in ~E behave 

correspondingly. The threshold ZCE is the least upper bound of this family 

of Zc and separates ZE. So does HCE for ~E. Since V is symmetric on 

~E' the threshold ZCE coincides with the first maxima with respect to all 

qi' i = l, ... ,n at the two neighboring Dirichlet unstable equilibria. 

Clearly the global shape of H depends on V (V(·) is called the 
-p driving funation). Once Q and thus V are given (V with accuracy to the 

constant V(qO», (2.3.15) picks up the equilibria, and (2.3.20) selects the 

Dirichlet stable ones. Similarly as for V, we may repeat our construction 

about other Dirichlet stable equilibria transforming the coordinates suit

ably. We obtain the local cups z~, k = O,l, .•• ,M with underlying ~~. 

With all the cups defined, the highest threshold is also 
. max 1 M I 

def1ned by hCE = max(hCE,···,hCE). Then we again let ZL hL = inf hC > 

h~~ . The se: ZL separates the region ZEL c H that includes all the 

local cups ZE and defines the corresponding ~L' in turn including the 
k 

union ~ liE. The shape of V in the large extends to that of h because 

of the shape of T. Over the complement of ~L to ~, denoted C~L' there 

are no critical points, and in CZ = Z - Z there are no extrema of H. 
EL EL 
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Thus the structure of CZEL resembles that of a local cup with the nest 

centred about 00. Therefore CZEL is called the energy cup in the large. 

The consequences regarding its image in 6. are obvious. 

Let us now consider the Zc allover H, and denote by 6.c the regions 

separated by the corresponding EC d6.C in 6.. It is instructive to 

envisage H in three dimensions as a well with the bottom line V and walls 

T(q,q) thus consisting of a number of valleys or energy cups separated by 

saddles. We let the well be exposed to an intensive rain scattered evenly 

allover the place, thus the well being successively filled up with water. 

The rising water levels illustrate the varying ZC' while the area of the 

free water surface at each level illustrates the corresponding sets 6.C . 

Concluding, in general, the levels Zc produce the sets 6.C either 

simply connected with simply connected complements C6.c = 6. - 6.C ' or dis

joint with the complements mUltiply connected. For an example, see Fig. 

2.6. 

As there are no openings between the cups except over the thresholds, 

the rain fills up the cups quite independently of each other, yielding small 

disjoint lakes until the free water surface rises above separation sets. 

The study within cups is local. with rising water, more and more lakes 

become connected, requiring a global study. Finally at the level ZL we 

obtain a large single lake surrounded by the remainder of H without thres

holds, that is, the cup in the large. The investigation exercised on this 

remaining part of H, that is, over C6.L , will be called the study in large. 

EXAMPLE 2.3.4. We continue the Example 2.3.1, extending it now to the 

surface H, the latter derived by 

1 .2 fn ( ) d 1.2 1 2 1 4 1 6 E (x) = "2 q + q q = "2 q +"2 aq +"4 bq +"6 cq . (2.3.23) 

The extremal points are defined by 

thus coinciding with the equilibria 

dE/dq aq + bq3 + cq5 = 0 dE/dq = 0 
(0) (4) 

q , ... ,q Using the same data, 

namely a = c = 1 , 

where 

b = -2.1, we obtain the threshold ZCE: E(x) = hCE 

hCE = E(q(l) ,0) = E(q(2) ,0) = 0.15 . 

The ECE passing through 
(1) (2) 

q ,q is 

0.Sq2 + 0.Sq2 - 0.S3q" + 0. 17q6 0.15 

and it encloses not only 6.E but three disjoint 6.~, the basic 6.E inclusive. 

From the table of Example 2.3.1, the threshold hCE = 0.15 corresponding 

to it is the highest of the system on 6. so ECE = ()6.L , and the complement 
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of sets enclosed by this curve is the region in-the-large C~~L that under

lies the cup in-the-large. The reader may himself check, as an exercise, 

that (2.3.23) is an integral of 

q + q _ 2.lq3+ q5 = 0 . (2.3.24) 

We shall turn now to a further extension, namely for the case of 

N 

with 

2n = 4 . 

III (ql ,q2) 

II2 (ql ,q2) 

We see the reference system now as 

i = 1,2 

IIII (ql) + II 12 (ql -q2) 

II22 (q2) + II21 (ql -q2) 

(2.3.25) 

A large class of physical models allows symmetry in coupling, namely 

which leads to significant consequences. 

First, the restitution law becomes simplified and takes the form 

(2.3.26) 

indicating that the restitutive forces have been directed opposite to the 

corresponding displacements, which is a simple physical fact, and must 

include the coupling force with respect to the relative displacement 

Obviously (2.3.26) does not imply this fact. It is only the 

necessary condition for the minimum, thus also for the stability of equili

brium at the basic level. 

Secondly, we obtain for i 1,2 , 

Let us specify now 

that is, leaving the restitutive coupling linear. 

We let > 0 and with the same type 

of restrictions upon ibli, ib2i as made previously upon ibi 

energy is 
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The equilibria are defined by the equations 

{ " q, + 
b q3 + clq: + a l2q l - a l2 q2 0 

I I 

a 2q 2 + b 2q 2 + c 2q 2 - a l2 q2 + a l2 ql 0 

The first obvious root is the basic equilibrium ql 

add the equations to obtain 

O. Further, we 

which for ql t- 0, q2 t- 0 is true if simultaneously 

i = 1,2 , 

that is, if 

[ 
-b, ± Ib? - 4a, c ,]1:; 

+ ~ ~ ~ ~ 

- 2c i 

~ Assuming b i = -2(ai c i ) we shall indicate how to attempt the problem 

algebraically. The roots obtained are ql = ±(al/cl)~' q2 = ±(a2/c2)~ 
On substitution to the equations for equilibria, one obtains 

(1) (2) ±(al/cl)~(l +a l 
a 

q2 ,q2 +--1.+ lalb l ) 
a l2 

(1) (2) 
± (a Ic ) ~ (1 + a 2 

a 
la 2b 2 ) ql ,ql + .2.. + 

2 2 a l2 

as the coordinates of the two other than stable equilibria. The threshold 

is obtainable on substituting the values for q~l) ,q~l) into the energy. 

We have 

hCH E(q(l) q(l) 0 0) 
I ' 2 " 

Then ECE is the 3-dimensional closed surface in RN 

.2.2 2 2 (~ 4 ~ 4) + I ( 6 + 6) 
ql+q2+ a l q l+ a 2q 2- aic i ql+ a 2c 2 q2 '3 clql c 2Q 2 

enclosing the region LIE. D 
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Fig. 2.11 

Fig. 2.12 

EXERCISES 2.3 

2.3.1 A homogeneous wooden plank of length £, thickness s and weight mg 

rests on a semicircular support of radius r shown below. If the 

plank is tipped slightly, what is the condition for Dirichlet stable 

equilibrium at its (balancing) top position? Note that the potential 

energy is calculable as V = mg[ (r + l:!s) cos 8 + r8 sin 8 J and its 

minimum is obtained at points 8 where dV/d8 = 0, d 2V/d 28 > 0 

We conclude that the sought condition is 8 0, r > l:! s Granted 

the above, show that the motion equation of the plank is 

8[ (r6) 2 + (s/2) 2 + (s2 + £2 ) /12 J + [ (rEl) 2 + rg cos 8 J8 - (3g sin 8) /2 = 0 

2.3.2 The point mass m may only move along the horizontal axis marked in 
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the figure below. It is suspended on a linear spring with charac-

teristic -kq and static length R, > r. with the change of q the 

spring is alternatively compressed and extended. Show that the 

motion equation can be written as q - (k/m)q + bq3 = 0 , b being 

a positive constant. 
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2.4 ENERGY FLOW AND POWER 

Let us now investigate how the motions of the nonconservative systems 

(1.5.26), (1.7.10) or (1.8.6), or for that matter, (2.2.1), (2.2.2), (2.2.3) 

behave with respect to the conservative reference frame on H. The measure 

of such behavior will be given in terms of the energy change along such 

motions, that is, the instantaneous power. Substituting (1.7.10) into 

(2.3.6), we obtain 

\' ClH D Q~) 
Li Clp. (Qi + ~ 

~ 

(2.4.1) 

Alternatively for the Lagrange equations (1.5.26), in view of (2.3.1) we 

obtain 

d ClT Cl (T - V) F _.:. ) D _ .:. 
dt Clqi - Clqi = Qi (q,q,ui + Qi (q,q) , i=l, .•. ,n 

Multiplying it by qi and summing up over i, we have 

Since 

and 

d [T(q,q) + V(q) ] 
dt 

(2.4.3) becomes 

2T , 

(2.4.2) 

(2.4.3) 

(2.4.4) 

representing the instantaneous rate of change of total energy, obviously 

coinciding with (2.4.1). The rate is evaluated by the sum of inner 

products 

recognized as the input and damping powers, respectively. When a power is 

positive for q oj 0, it accumulates the energy, and the corresponding 

force is called accumulative. Non-positive power dissipates or preserves 

the energy and the corresponding force is called dissipative. In particu

lar, if the force is not potential but still produces a zero-power over 

some time interval, it is called neutral. 

In the majority of cases, the damping forces are dissipative: dry 

friction or viscous damping, caused by slips and other boundary sheer 

effects at mating surfaces; oil, water, air resistance in the environment 
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of the .system and/or its hydraulic or pneumatic power supply; structural 

damping in bodies caused by microscopic interface effects like friction or 

sliding. We shall specify such forces as positive damping, denoted 
DD (-.:.) . h' D - .) Qi q,q W1.t correspond1.ng characteristics Di (q,q .• Using the same 

transformation (1.5.7) as for the potential forces from the Cartesian to 

generalized damping, we may form the dissipation function 

which produces negative work. The power of such positive damping forces 

is negative: 

, DD(_.:.. 
L .Q. q,q)q. 

1. 1. 1. 

or alternatively, 

,n D (_ .:.. -D - .:. T.:. 
Li=l Di q,q)qi = D (q,q) q > 0 , q 'I 0 , 

complemented by (2.3.12) applicable here as well. 

(2.4.6) 

(2.4.7) 

The above assumptions make the positive damping an odd function with 

respect to the velocities q.. By the character of the applied damping 
1. 

forces, either viscous or Coulomb - dry friction, we may also assert that 

they are at least non-increasing in velocity, 

" DD _ .:. 
aQ. (q,q) 

1. 
~ 0 , 

A similar argument leads to assuming that 
DD Qi depends upon Iql 

than on an arbitrary q and that it monotone decreases with qi: 

" DD I-I .:. aQ. ( q ,q) 
1. > 0 , for all i l, ... ,n . 

(2.4.8) 

rather 

(2.4.9) 

Whether or not the mechanical system working in certain conditions 

exhibits auto-oscillations (or more generally any self-sustained motion) 

remains a matter of discussion, but the possibility is there. In this case 

the implemented power is positive, at least for some values of the veloc

ities q., and we have the so-called negative damping forces. Such forces 
1. 

DA(_ .:. h are obviously energy accumUlative and will be denoted Qi q,q) wit the 

corresponding characteristics D1(q,q) Hence 

, DA(_.:.. DA(- .:.)T':' 0 
Li Qi q,q)qi = Q q,q q > , q 'I 0 , (2.4.10) 

and 
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~ A _ .:.. ~ -AO - .:. T -=-0 A_-=- T.:. 
L.i °i (q,q)qi = La 0 (q,q) q = 0 (q,q) q < 0 , q t- 0 (2.4.11) 

Self-excitation is known as a so-called "velocity motor", and there is no 

self-excitation at rest, whence 

i l, ... ,n . (2.4.12) 

once a self-sustained oscillation appears, it is reasonable to expect 

that there will be some neighborhood of q = 0 with the negative damping, 

and obviously such damping may as well appear on other intervals of 

velocity. 

with all the above, the damping forces result in both types of damping 

and we assume 

Q~(q,~) (2.4.13) 

and 

( -.:.) A(_-=-) O(I-I-=-) O. q,q = O. q,q + O. q,q , 
~ ~ ~ 

i = l, ... ,n . (2.4.14) 

There cannot be any blanket assumptions upon the sign of the input power 
-F T· 

(Q) q as the controller may be used both ways, either to supply or with-

draw the energy from the system. It will also work at equilibria, thus 

implying possibly non-zero values of Q~ there, see Benedict-Tesar [lJ for 
~ 

the case in robotics. 

on the other hand, since the power from all energy sources (even 

nuclear) is always eventually limited, there may be no objection to our 

axiom of bounded accumulation, by which we mean the following. For any 

point (qO,qo) E ~ there is a number N > 0 large enough to secure 

IQDA(q,q) T q + QF (q,q,il) T ql::; N < 00 (2.4.15) 

for all q(t) ,q(t) E t::. along a trajectory from (qO,qo). This means that 

the external input, whatever its source, decreases whenever the velocity of 

motion increases and vice versa, which gives (2.4.15) a power balancing 

role. 

In a much wider but also more vague sense, the axiom is justified by 

the so called le-Chatelier Principle: every external action produces in a 

system (body) changes which tend to neutralize that action, building up a 

resistance to it, see Kononenko [2J. 

With all the above discussion in mind, we may see that (2.4.4) which 

may now be written as 

• • -OA _ .:. T • F _ .:. - T.:. -DO _ .:. T .:. 
E(q,q) = Q (q,q) q + Q (q,q,u) q + Q (q,q) q (2.4.16) 
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or, in view of the zero-power of the gyro forces: 

gives the power balance along the trajectories of (1.5.26). Obviously the 

same discussion refers to the forces of (1.7.10) with H(q,p) and with p 

replacing q in all the assumptions. 

We return now to the surface H h = E (x) in Z of the previous 

section 2.3. Lifting the trajectories ¢(xo,]R) of (2.1.4) from!:' into 

Z, we obtain what may be called energy-state-trajectories h(u,xo ,ho,]R) , 

where hO = E(xo) Introduce now the scalar function fo(x,u) = 

= VE(x)T.f(x,u) = E(x) called the power characteristic, determined by 

(2.4.4). The energy-state trajectories are defined by the equations 

x f(x,u) • } (2.4.18) 

The first equation is the scalar energy equation describing the balance of 

power or change of E subject to constraints specified by the second 

equation. 

An energy-state trajectory h(xo,ho,:JR) projected into the h-axis of 

Z produces the one-dimensional set of points h(ho,]R) named the autono

mous energy flow related continuously to the parameter hO E [O,h!:,) , 

describing the initial amount of the total energy contained in the system 

before motion. The values h(hO,t) = he E [O,hf ) c [O,h~) define the 

amount of the energy at t, obtained as the result of the change or flux 

during [to,t), either influx (increase) or outfZux (decrease). The latter 

two are also called respectively the energy input and the work done by the 

energy changing actions. The zero flux might be incorporated in either the 

influx or the outflux. Integrating the energy equation along time up to a 

given t < 00 

h(hO,t) 

we obtain the flow value 

t 

hO + f fo(x,u)ds 

to 

(2.4.19) 

with the integral representing the flux with respect to the initial flow 

value hO, contained in the system at to' Note that the flow is additive 

on ]R: h(hO,t 1 ) + h(h(hO,t 1 ),t 2 ) = h(hO,t 2 ), for any t 1 ,t 2 EJR, t 2 >t 1 , 

and that fo(x,u) is bounded, see (2.4.15). We shall also justify below 

that for intervals with negative values of f o ' the flux may not exceed hO 

so that there is no chance of h(hO,t) becoming negative. The surface H 

is locally diffeomorphic to JR N, that is, a neighborhood of a point in H 

is the image of JRN under a one-to-one and onto map which is differentiable 

together with its inverse. Then it is possible to define a field of 
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directions and thus the integral curves on every such neighborhood and 

hence on the whole H. Further, since h = E (x) is single valued on !::., 

to every point x ~ ~ there corresponds a unique point (h,x) ~ H n Z~ 

and the energy-state trajectories are unique. 

This is not the case with the energy flow. Although to each point 

x of !::. there corresponds a point h(xo ,he ,t) on the h-axis: 

hc = h(hO,t) of the energy flow, the inverse map is clearly set valued. 

In other words, the same hC yields a continuum of points in H, namely 

the level Zc and thus the topographic surface EC in !::.. Thus a trajec

tory and/or an energy-state trajectory generates the corresponding energy 

flow, but the latter implements only the change of energy levels along the 

trajectory, and we need to refer to known levels to be able to obtaIn even 

a qualitative behavior of the trajectory. 

The equations (2.4.18) imply that fo is the h-axis component of the 
-E T the rise vector f = (fo,fl,···,fN) , so or fall of the energy values 

along the trajectory depends upon the sign of fa • Consider an arbitrary 

trajectory ~ (x o ,JR) , x O ~ ~ , which is in general non-conservative, and 

given t, consider a regular point x(t) on this trajectory. Let EC be 

the corresponding topographical (iso-energy) surface through that point, 

with the projection into!::' shown in Fig. 2.13. It subdivides!::' into two 

regions. We call the region into which the positive gradient V'E (x) is 

EC 

VE(x) 

Fig. 2.13 

directed the exterior, and the other the interior of the surface EC' If 

given U, we have x(t) such that fo (x,ii) > 0, then there is an energy 

influx at x (t) and the corresponding energy flow h (h 0 ,JR) is directed 

upwards, away from h 0 on the h-axis. This means that the other com-
-E -ponent of f , namely the tangent vector f(x,u) to the trajectory is 

directed towards the exterior of EC ' forining a sharp angle y with the 

gradient. See Fig. 2.13. If fo(x,ii);'" 0, the thrust of the energy flow 

is the same, but the trajectory may have contact with EC for longer than 

111 



www.manaraa.com

the instant t, that is, it may slide on EC with f(x,il) parallel to the 

tangent for same short interval of time. The latter happens at any point 

where fo (x,ti) = 0 • On the other hand, when fo(x,il) < 0 the opposite 

takes place. The sense of the energy flow is reversed, it is directed 

downwards, towards h = 0 on the h-axis. This forces the tangent vector 

f(x,il) to be directed towards the interior of EC' forming an obtuse angle 

y with 'ii'E(x). 

Observe that f ° (x, il) = 'i7E (x) T. f (x, il) is a point-function on t:,. and 

because of its continuity the points where fo has a definite sign are not 

isolated. Hence we can specify regions in t:,. covered with the fields or 

zones accumulative H+: fo (x,il) > 0, neutral HO : fo (x,il) 0 and 

strictly dissipative H- : fo (x,il) < 0, on which the energy balance 

(2.4.17) is respectively positive, zero or negative, and on which the tra

jectories leave, slide or enter the interior of each current EC in t:,. 

they cross. Consequently the points of H+,Ho,H- are called the exit 

points and entry points correspondingly to the EC level concerned. At the 

same time, the constant sign of fo decides about the direction of the 

energy flux. The flux on some interval [to,t) € ~ may be positive, 

negative or zero. Whatever happens inside [to,t) if, given to' we have 

h(ho ,t) :<; h(ho ,to) , (2.4.20) 

an energy flow of (2.1.4) is called dissipative on [to,t): otherwise it 

is accumulative on this interval. The strong inequality in (2.4.20) pro

duces strict dissipativeness. The relation (2.4.20) is called the dissi

pation inequality. The system (forces) must have been dissipative 

(accumulative) if the produced energy flows are dissipative (accumulative). 

The same flow is called monotone dissipative (monotone strictly 

dissipative, monotone accumulative) on [to ,t) if for any T € [to ,t) we 

have fo (X(T» :<; 0, (fo (x (T» < 0 , (f o (X(T» > 0) We conclude that 

the monotone dissipative arcs [to,t) of trajectories are embedded in the 

dissipative field H-, while the monotone accumulative in the accumulative 

field H+. 

Monotone dissipativeness includes the conservative subcase: 

fo (x (t» :: 0 It is often a convenient convention, though the conserva-

tive systems will usually be specified separately. In such systems there 

is no energy flux, thus h(hC,R) = hC for any hC or h(ho,JR) = h O along 

any flow, and the flow is at rest or energy-equilibrium. Note that the 

above refers to the total energy. 
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The f ° is the rate of energy flow at each x, but also average across 

the system at that point. By (2.4.17) we can see which characteristics of 

the system contribute to the energy flow, and then estimate the power at 

the points between particular elements or subsystems of the overall mechan

ical structure. 

As we shall see in the next chapters, the energy flow measured by fo 

at each state x and across the system is indicative of the system behavior 

under control and thus it is a feature helping to design suitable control 

and adaptation programs. Consider the energy flow dissipative on [to,t) 

By (2.4.20), h(hO,t o) = h O 2 h(hO,t). The system acts during [to,t) as 

an energy source for its environment (for instance, mechanical energy 

transferred into heat via dry friction) . To do so, the system re'1uires some 

supply of energy h O , accumulated prior to the instant to , say during 

[To,t o) with fo (x,u) > o , T E [To,t o) where fo(x,u) and Ito -Tol 

are large enough to provide recycling during dissipation on [to,t). We 

assume this amount to be the minimal amount necessary and, by (2.4.15), to 

be the finite required energy 

to 
inf J fo(x,u)dT > 0 , 

To 

named so by Willems [lJ. Granted the required energy, we define the maxi

mal amount of it which may, at t, have been extracted from the system 

(fo(x,u) ~ 0) into the environment: 

E (x) 
a 

We call it 

t 
= sup J - fo (x,u)ds, x = CPu (xo ,s) , 

u to 

the recoverable work or the available 

s -+ t . 

storage, again according 

to Willems [2J. By dissipativeness, 0 ~ Ea(x) < 00 Obviously, the system 

cannot dissipate more energy than has been supplied to it, thus 

h O = E (xo) 2 h(ho ,t), for any given t Cffi+. On the other hand, 
r 

E (x(t)) has been the maximal extracted, thus a 

(2.4.21) 

+ for any given t EJR O as long as the flow is dissipative. Hence the energy 

outflux is estimated by E (xo) - E (x) = h O - E (x) , which agrees with r a a 
(2.4.19), with non-positive fo(x) check 

t 

J fo(x(s))ds ~ 
to 

(2.4.22) 

Since the flow is additive, we may as well -introduce the maximal outflux as 

Note that the cycle energy is 
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in general different from the stored energy in the system at t, which is 

the flow value h(hO,t) defined by (2.4.19). The cycle energy serves as 

an estimate for the energy flow. 

We justify (2.3.12) and (2.4.12) by recalling the derivation of 

(2.4.16). We conclude that the autonomous uncontrolled system may not 

start from the basic equilibrium: E (xo) = o. This confirms our dis
r 

cussion in Section 2.2, cf. (2.3.13). 

When E (xo) = E (x) , the cycle energy vanishes, and the dissipative 
r a 

flow is said to be reversible. The flow is irreversible if Ek(X) does 

not vanish except at the equilibrium x = 0 

Now let us suppose that the flow is accumulative on a given [to,t) 

OUr reasoning of all the above may be inverted. The system consumes the 

energy from the environment on the interval, similarly as the dissipative 

system had to do prior to the instant to. The available storage of the 

system at t < 00 becomes the produced storage 

(2.4.23) 

for the dissipative system. 

This storage is fixed relatively to some N, introduced in (2.4.15), making 

fo(x) bounded, cf. (2.4.19). Since no autonomous system may start from 

the basic equilibrium, we estimate now 

0< h(hO,t) os; E (x) , 
p 

(2.4.24) 

for any given t ERas long as the flow is accumulative. We immediately 

have the influx estimated by E (x) which by (2.4.24) is also the cycle 
p 

energy. 

Let the flow be dissipative on [to,t l ) and accumulative on [t l ,t 2 ). 

If the dissipative flow has been reversible, that is, Er(Xo) = Ea(x(t l » 

we may envisage the situation that 

E (x(t l » = E (x(t 2 » = E (xo) , 
apr 

that is, the energy flow is recycled to its value hO, that is, h(hO,t o) 

When the above occurs for [to,tn),tn = nt 2 with n a posi-

tive integer, the energy flow on this interval may be n-times recycled, 

and we shall say that the flow is multiply reversible. In parituclar, if 

this mUltiple reversibility is such as to allow for a constant L > 0 , 

yielding 

h(ho ,t+L) , (2.4.25) 
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that is, the function h is periodic with the period L, we shall say that 

the dissipative flow of [to,t l ) is L-periodiaally reversible. The flux 

on the recycled flow on [to,t2) vanishes, cf. (2.4.22), and so it does 

for the entire interval of definition of the multiply reversible flow. 

When the dissipative flow on [to,t l ) is reversible, but Ea(X(t l )) 

~ Ep (x (t2)), the flow is not recycled on [to' t 2) , but in particular one 

may still meet with the circumstances where for any E > 0 there may be 

found a <5 > 0 sufficiently large for t2 - tl < <5 to yield 

IEa(X(t l )) - Ep (X(t2)) I < E (2.4.26) 

One may say then that the energy flow on [to,t2) has been almost reayaled. 

The concept of the almost-periodia reversibility of the flow on [to,t l ) 

is formed in the obvious manner. 

The above discussion applies to the dissipative (acc~ulative) flows 

on suitable intervals. In most cases, the intervals of dissipativeness and 

accumulativeness may be partitioned further into intervals with monotone 

properties. Thus time-globally we have a aolleation of monotone dissipative 

and/or aaaumulative time intervals to consider. 

When perturbation force appears in the resultant of the applied forces, 

cf. (1.5.26), (1.7.10), the derivation of the power balance (2.4.17) remains 

the same, except for adding one more term of the perturbation power: 

L Q~(q,~,t)q. ~ 0 , . ~ ~ 
qi ~ 0 , with characteristics L R. (q,q,t)q. ~ 0 which 

i ~ ~ 
~ 

yields 

E(q,q,t) 

or 

Moreover, the axiom of bounded accumulation (2.4.15) is now complemented by 

the existence of N' > 0 such that 

I-R • T·I Q (q,q,t) q :5;N' < 00 (2.4.29) 

for all q(t),~(t) € 6 along a motion from (qO,~O,to) which represents 

the aziom of bounded perturbation. 

With the perturbation force the system becomes nonautonomous with 
- -0 + N+l equation (2.1.20) and solutions-motions cj>(x ,to,JR) in I::. x JR C R 

Consequently the conservative frame of reference H has to be augmented 

into H x JR, together with all the related motions. The augmentation is 

cylindrical, since E(x) is not dependent explicitly on t. Hence the 

levels EC x JR are isometric to previous EC in 1::.. Upon H x JR we now 
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• -0 0 f? 0 have energy-state mot~ons h(x ,to,h ,R) with the energy vOW h(h ,to"): 

R+ +R being now to-dependent and with the power characteristic fo(x,u,t) 

being t-explicit dependent and determined by (2.4.17). Introducing the 

augmentation, we still have the same dissipation inequality and all its 

consequences maintained. 

As mentioned at the opening of Section 2.3, when the system is subject 

to uncertainty, see either (2.2.1), (2.2.2) or (2.2.3), in general (2.2.6), 

the situation is different. First the characteristics are subject to w, 

then since the potential forces may be uncertain, so is the energy E(x,w) 

This means that the surface H may not be obtained directly from the energy 

in a unique way. It is defined from the nominal value of either 

(2.4.30) 

or 

(2.4.31) 

depending upon our task of study, and upon the sign of the corresponding 

power which we want to achieve by using the controller. Which of the pair 

E-,E+ of nominal H's is used will thus be specified within particular 

problems studied. Whatever the defining base for H, the power balance 

(2.4.17) or (2.4.28) is now specified in terms of the uncertain character

istics, and the same goes for fo ' whence we have for (2.4.18) 

fo(x,ii,w,t) , ) (2.4.32) 
x f(x,u,w,t) 

which is a selector system for some contingent format of the energy-state 

equations with energy-state motions discussed in 6 x h x ~ , denoted by 
- 0 0 <j>(h ,x ,to,t), t ~ to • 

The axioms of bounded accumulation (2.4.5) and bounded perturbation 

(2.4.9) now take the shape of 

IF(q,q,w,U)T~ - DA(q,q,w)T~1 :s; N, V W E W , (2.4.33) 

V W E W , (2.4.34) 

respectively. Similarly, the dissipation inequality will require 

o - 0-h(h ,t,w) :s; h(h ,to'w) , W E W • (2.4.35) 
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Chapter 3 

STABILIZATION 

3.1 BASIC CONCEPTS OF CONTROL AND SYNTHESIS 

In Section 1.2 we have mentioned the division of kinetic studies 

two directions: Analysis, and either Synthesis (Design) or Control. 

Analysis deals with the Second Problem of Mechanics and answers our 

question (ii) : how the system may move under given forces? In that, 

gives options for the desired objectives of the second direction: 

into 

it 

Synthesis or Control, which answers the First Problem of Mechanics, that 

is, our question (iii) of Section 1.2: how to design the forces both 

internal (Synthesis) and input (Control) in order to obtain a desired 

type of motions which attain a stipulated objective? As has been said, 

Synthesis deals with designing characteristics of the internal applied 

forces such as damping, gravity or elastic forces. One may either choose 

entire functions (eigen, or coupling, or both) or given a general shape 

of the functions choose their parameters, say, coefficients in a power 

series representation. 

In the latter case we actually come close to Control, which means 

choosing the variable u(·) within the input terms F. (q,q,u) , 
1 

i = l, ... ,n. Indeed, if such a choice is generated by a feedback 

program, see (2.1.1), the problem is called a control synthesis, which 

should not be confused with the synthesis discussed above. To avoid such 

confusion, we shall call the latter a de8ign synthesis, which then may be 

further classified as structural and kinetic, depending on whether it 

refers to designing the structural model (number of DOF, system organiza

tion: schematic diagram, types of coupling, etc.) or to designing the 

functions of characteristics as discussed above. In Section 2.3 we gave 
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examples how the design synthesis can compensate, at least in part, for 

the control synthesis. A little further in this chapter, we shall discuss 

this problem again. 

Solutions to the problems covered by either control or design synthesis 

may not exist. 

characteristics 

Within the admissible control programs or classes of 
i Di (.),ITi (·) we may not be able to find such P (.),Di (·), 

ITi (·) which will allow attaining the stipulated objective, that is, secure 

controllability or synthesability for such an objective. Since the 

admissible classes are bounded and the controllers and characteristics sub

ject to constraints, the problems of controllability or synthesability are 

by no means academic. 

Let us consider the following simple example. A missile pursues a 

plane, both modelled as point masses equal to a unit. We ignore gravitation 

as well as any other applied forces except the control force. The plane 

moves along a straight line, say the q-axis: q(t) = qO + 0.1 t 3 , qO > 0 

and the missile follows with the acceleration qM(t) equal to the con-

trolling thrust force u (t) , lui s 1 Choosing states xl = qM' x 2 = CrM 

we have for the state equations xl X 2 X2 = u. The pursuit is made 

along the xl-axis and with the maximal thrust force u = 1, until collis-

ion at xl (t) = q(t) for sone t , that is assuming xl (0) = 0 when 

~t2 = qO + 0.1 t 3 • This, solved for t = t 
c 

, gives the time of collision. 

We can easily calculate that collision is not possible, that is, the system 

is not controllable for collision, if qO > 1.85 , as there is no finite 

t 
c 

In this case the airplane is simply too far ahead of the missile with 

the thrust qualified by the constraints lui s 1 . If the 

collision occurs at t = 3.33 and if qO < 1.85, it occurs earlier, that 
c 

is, tc < 3.33. From the latter we also see that there is a set of initial 

positions of the plane, with specified boundary qO = 1.85, which is the 

so called region of controllability for collision. Outside such a region 

the controllability for the specified objective is contradicted. Very much 

the same argument may be used for synthesability, if we complicate the 

example slightly. Indeed, introducing some characteristics into the motion 

equations of either the plane or the missile or both, we may want to design 

them so that this or some other objective is attained. 

It is obvious that both concepts, controllability and synthesability, 

are very much qualified by the type of objective concerned. In this book 

we concentrate on controllability which supports our main avenue of study, 

namely Control. For synthesability, the interested reader may peruse 

Skowronski [32J. 
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The first concept of controllability, which still persists in the 

control theory of linear systems, had a very simplistic objective: transfer 

a state motion of the system concerned between two given states xO , and 
_f _ ( ) . 

the terminal x = x t f t f ~ 00 under the deslgned control ii (t) 

t E [to,tfJ . 

The controllability problem for such an objective has been posed by 

Kalman-Bertram [lJ and Kalman [lJ for the autonomous (2.1.3) but solved 

only for its linear version ~ = Ax + BU, with A,B constant matrices of 

suitable dimensions. It was done by use of the Laplace transform, to the 

joy of people who like it easy, but not necessarily to those who like the 

models to be justified physically. As the models and the objectives grow 

more and more complicated, so do the demands for controllers and types of 

controllability. For instance, it is natural to expect that instead of a 

point-to-point transfer, we would want to start from a set in order to 

collide with a set, perhaps attained in stipulated time. Then we may require 

this collision to be qualified by a permanent capture after some time in the 

target set, or conversely by only a short rendezvous again in stipulated 

time. We may need a sequence of such collisions without capture perhaps 

ending with capture. The control scenario may also require avoidance of some 

antitarget set both in physical and/or in state spaces, alternatively avoid

ance of some moving obstacles either permanently or only for a specified 

interval of time. 

We may also want to combine the objectives of the above, for example, 

collide without capture with some targets and avoid some anti targets - and 

the process again may be qualified by stipulating time. Still more complex 

objectives are required when dealing with the relative motion of two or more 

substructures. We may want two systems to track each other in physical or 

state spaces or to avoid themselves the same way. The tracking or avoidance 

may again be required to be permanent or only within some time intervals. 

Finally, we may want to obtain a specific phase-space portrait of the 

mechanical system concerned, like stipulated distribution of equilibria and 

their types, prescribed limit cycles stable or unstable, structural stability 

(that is, holding the state-space pattern under perturbation), etc. All 

the above types of objectives can be grouped into a class which is described 

as qualitative. 

In general terms a qualitative objective is of the YES or NO type with 

respect to obtaining a certain qualitative objective property Q of the 

motions of (2.2.6) on some subset of L called then the Q-zone. Such a 
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property may be virtually anything as long as it is well defined, together 

with its zone. Then the ability to attain Q under some control program 

is called the controllability for Q. Due to the limitations of the chosen 

controller, the region of such controllability can be smaller than the 

Q-zone. 

We may want to attach to Q an extra subobjective, a cost of attaining 

Q, measured in terms of some functional defined and additive along the 

motions concerned, and generating scalar values like time, energy, power, 

miss-distance from a target, etc., which are to be minimized. such a sub

objective is called quantitative or more specifically optimal. We then 

talk about optimal Q and controllability for optimal Q. In this sense 

the composite objectives may be qualitative, quantitative, or both. We may 

wish to attain collision in minimal time, capture a target with minimum 

energy or effort, avoid an antitarget with the shortest miss-distance, etc. 

In fact, any of the qualitative objectives cited can be optimized in terms 

of some cost. The list of applicable specifications of Q and optimal Q 

is obviously too long to be quoted, and so is the relevant literature. 

In the text to follow, we give a few basic modular subobjectives allow

ing the building of a variety of composite obj ecti ves, some of which are also 

described together with the applied scenarios they fit best. Each time a 

brief review of relevant literature is given. The works which initiated 

research in controllability for general nonlinear systems with untruncated 

nonlinearity are those by A.A. Krassovski [lJ, Letov [lJ-[3J, Markus [lJ 

(see also Lee-Markus [lJ), N.N. Krassovski [2J, Gershwin-Jacobson [lJ and 

later the Leitmann school: Leitmann [lJ, Stalford-Leitmann [lJ, Sticht

Vincent-Schultz [lJ, Grantham-Vincent [lJ, Leitmann-Skowronski [lJ,[2J, 

Vincent-Skowronski [lJ, Skowronski-Vincent [lJ, Stonier [lJ,[2J, Skowronski 

[22J,[23J,[29J, see also Skowronski [32J,[38J,[45J, Aeyels [lJ. The systems 

with untruncated nonlinear but additive perturbations were treated by 

Cheprasov [1], Dauer [1]-[4J, Klamka [1J,[2J, and Aronsson [lJ, among others. 

For a more extensive review, see Skowronski [45J. 

It seems instructive to introduce the concept of controllability for 

Q of arbitrarily nonlinear systems, first on a very simple case. We take 

the autonomous (2.1.4) with Q being some elementary but typical objective 

property, say, asymptotic stability of the basic Dirichlet stable equili

brium, at which the origin of ~N is located. Moreover, we shall consider 

the Q-zone locally, that is, covering only ""E about the equilibrium con

cerned. Let us define such a Q-property as uniform asymptotic stability 
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of such equilibrium. More formally we have • . . 

DEFINITION 3.1.1. The basic equilibrium of (2.1.4) is stable on [I.E if and 

only if given [I.E for each E > 0 there is O(E) > 0 such that for each 
-0 x € LIE' 1I<I>(xo,O) II < 0 implies 11<1> (xo ,t) II < E , for all t ~ O. 

Here 11·11 denotes any norm in JRN , for instance, measured in terms 

of the energy E (x) As (2.1.4) is autonomous, the trajectories are inde-

pendent on to and so is 0 in Definition 3.1.1. Such stability is called 

to-uniform, or briefly unifo~, on [I.E' We may now form the definition 

specifying the present Q. 

DEFINITION 3.1.2. The basic equilibrium of (2.1.4) is asymptotically 

stable on [I.E if and only if it is stable there and for trajectories of 

Definition 3.1.1, there is 00 > ° such that 1l<I>(xo ,0) II < 00 implies 

<I>(xO,t) -+ 0, as t -+ 00 

Given the above objective property Q, we may now define the controll

abili ty for it. 

DEFINITION 3.1.3. The system (2.1.4) is controllable for asymptotic 

stability of the basic equilibrium on a set [1.0 c [I.E if and only if there 

is a control program P(x) defined on [1.0 such that for each xO € [1.0 ' 

the corresponding trajectory of (2.1.4) satisfies Definition 3.1.2. 

The union of all such [1.0' s (the maximal such [1.0 in [I.E) is the region 

of controllability for the asymptotic stability of above, denoted [l.AS' 

Now we want to find a program P(·) securing the above, and the region 

[l.AS· 

It is obvious that as the trajectories of (2.1.4) approach the basic 

equilibrium in the scenario of uniform asymptotic stability, the energy 

decreases from E (xo) towards the basic level E (0) = 0. As such, 

asymptotic stability holds for all xo € LIE' The decrease is monotone and 

at each E-level which is crossed by the trajectory we have the entry points 

of H- only: 

E(x) = VE(x)Tf(x,u) < ° , (3.1.1) 

which then is the necessary condition for the uniform asymptotic stability 

between the levels E(xo) = h O and E(O) = ° The entry points were 

defined in Section 2.4, VE(x) denotes grad E(x) = (dE1dX1, ... ,dEldXN) 
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Note that, given u, (3.1.1) defines an open set in i'lE' Then, the lowest 

hO-level at which (3.1.1) is contradicted generates in i'lE a surface which 

can be considered an estimating candidate for the boundary di'lAS of the 

region i'lAS' see Fig. 3.1. Note also that the above is qualified by some 

control variable u, assumed already selected, presumably in terms of a 

candidate P ( . ) 

We must now confirm these candidates by suitable sufficient conditions. 

Let us use the following theorem introduced by Markus [2J. 

h 

Fig. 3.1 

CONDITIONS 3.1.1. 

differentiable) 

that 

If there is a function of class C 1 

N 1 -v(·) : JR .... lR and a C -program P(·) 

(i) v(x) > 0 for x of o , V(O) 0 

(ii) V(x) .... 00 , as lxl .... 00 

(iii) VV(x)Tf(x,ii) < 0 for x 'I 0 , 

(continuously 

defined on i'lE such 

(3.1.2) 

then the system (2.1.4) is controllable for uniform asymptotic stability of 

its basic equilibrium. 

Heuristically the proof follows by contradiction between (i), (ii) and 

(iii) holding everywhere about the origin. Rigorous proof may be found in 

Markus [2J. Letting v(x) tE E(x) we have (i), (ii) holding on i'lE' and 

(3.1.1) makes (iii) satisfied as well as necessary and sufficient, with 

u = P(x) found from the following conclusion. 

COROLLARY 3.1.1. 

such that 

VV(x)Tf(x,ii*) 
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Then condition (iii) is met with u* 

We illustrate the above on a local case in-the-small, that is, for 

amplitudes of x near the bottom of the cup ZE ' that is, for a sufficiently 

small neighborhood of the equilibrium and sufficiently small control range 

U. In such a case we may linearize (2.1.4). Indeed, let f(·) be con

tinuously differentiable and such that f(O,O) = 0, which itself is 

restrictive. Then we may develop it into a power series and truncate all 

higher power terms so that (2.1.4) becomes 

x = AX + Bu (3.1.4) 

with 

11 [afi) I B= -- - -
aUk x=O,u=O 

(3.1.5) 

for i,j = 1, ... ,N , k = 1, ... ,r Let the control program be defined by 

u = KX, where K is an rXN matrix to be designed. Then (3.1.4) becomes 

x = Ai , (3.1.6) 

with A ~ (A+BK) We let the V-function be the energy expressed as the 
_T _ 

square form V = x Px , where P = (Pij) is a symmetric positive definite 

N x N matrix. Such V(·) certainly satisfies (i), (ii). We then calculate 

the derivative V = ~Tpx + xP~. When A is nonsingular, then P and 

ApA- 1 have the same eigenvalues. Hence V xTATpx + x?pAi. By the 

symmetry of P, xTp~ = (pTx) T~, implying 

V xT[ATp + pAJi = _xTQx , 

where 

(3.1. 7) 

which is called the Liapunov Matrix Equation, with Q also a symmetric 

matrix (quite often just the unit matrix). It follows that, given suitable 

A and positive definite Q, we obtain 'iT(.) negative definite, thus secur

ing the asymptotic stability required. On the other hand, again given 

suitable A, the matrix p could be obtained as a positive definite solution 

to the Liapunov matrix equation, say with Q = I, securing the asymptotic 

stability through the corresponding Liapunov function. The suitable A is 

called stable, and it satisfies the above described role, if and only if its 

characteristic roots have negative real parts. Then the matrix K which 

secures such a case makes a control program asymptotically stabilizing 

(3.1.4) about itt) = 0 . 
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EXAMPLE 3.1.1. Let 

( -2 0 0 

A ~ 4 -1 0 

0 0 -2 

The Liapunov Matrix Equation is 

-2 4 0 Pu P12 P 
13 

Pll P12 P 13 -2 0 0 

0 -1 0 P 21 P 22 P 23 + P 21 P 22 P 23 4 -1 0 

0 0 -2 P 31 P 32 P 33 P3l P 32 P 33 0 0 -2 

-1 0 0 

0 -1 0 

0 0 -1 

wherefrom 

-4P ll +4P 21 +4P 12 -3P 12 +4P 22 -4P 13 +4P 23 -1 0 0 

-3P 21 +4P 22 -2P 22 -3P 23 0 -1 0 

-4P 31 +4P 32 -3P 32 -4P 33 0 0 -1 

and thus = 
1 

= = o , = 
1 

= = 0 P 22 2 , P 23 P 32 P 33 4 
, P 13 P 31 , 

= = 
2 19 yielding the symmetric matrix P 21 P 12 T , P ll 12' 

19 2 0 12 3 

P 2 1 0 T 2 

0 0 1.. 
4 

Then the Sylvester conditions for positive definiteness (all minors posi

tive) give 

19 
12 

det p 1 
12 

25 
24 

all positive. Hence P is positive definite and symmetric, thus yielding 

V < o. Brief calculation gives V(x) : 

V(x) (xl X3) 19 2 0 19 2 4 + 1.. x2 1 2 X2 12 3 xl 12 Xl + T X1X2 2 2 + "4 X3 

2 1 0 "3 2 X2 

0 0 1 
if X3 
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which secures the asymptotic stability of the origin as required. D 

EXAMPLE 3.1.2. To illustrate the nonlinear case we consider the classical 

Lienard system with the scalar motion equation 

q + d(q)q + k(q) = u (3.1.8) 

where d(·),k(.) are C1-functions, with the assumption of the restitution 

law (2.3.18) stretching for all E2 : k(q)q > 0, V q ~ 0 , that is, the 

energy cup liE = lI. The energy is immediately obtained as 

E(q,q) = + q2 + J k(q)dq 

generating the power E(q,q) 

(3.1.9), we obtain 

(3.1.9) 

and substituting (3.1.8), 

(3.1.10) 

Lienard [1] assumed Jk(q)dq -+ 00 as Iql -+ 00, which with (3.1.9) implies 

that conditions (i) and (ii) hold. To make E(q,q) negative definite, we 

choose P(q,q) from (3.1.3) such that 

or 

max (uq) < d(q)q2 , 
U 

q ~ 0 , 

u sgn q < d (q) I q I , q ~ 0 , (3.1.11) 

which determines P(.), depending upon the sign of d (q). The latter 

may be negative, producing negative damping, that is, contributing to the 

positive power balance (3.1.10) which opposes our objective. The controller 

P(·) must be so designed as to counterbalance the damping power d(q)q2 

in order to make (3.1.10) negative. D 

After the above introduction, we may return now to the uncertain system 

(2.2.6) and the general property Q. We do this not wishing to general

ize, but solely for technical reasons, namely in order to avoid repetitive 

defining of controllabilities separately for each of the later discussed 

objectives. Indeed, although some conclusions follow directly from the 

general definitions given below, they will be left for discussion on 

particular Q's later in the text. 

First, we want to establish whether, given the objective Q, the system 

is capable of attaining it at all, that is, possibly with cooperation of the 
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opposing uncertainty. This means there must exist a control program F(·) 

such that for some, possibly friendly values w, we can attain Q. The 

above generates a pair of functions u(·),w(·) producing a motion, possibly 

just one motion, exhibiting Q. The above is the so called weak mode of 

aon-tr>oZ (sensitive to w(·) ) securing controllability for Q under suitable 

w ( .). We clas sHy it as follows. 

DEFINITION 3.1.4. The system (2.2.6) is aontroZZabZe for the objeative Q 

on some 1:;.0 c I:;. at to if and only if there is a program P(·) such that for 

each xO € 1:;.0 there is a motion Cji (.) € K (xo ,to) exhibiting Q. When 

F ( . ) ,Q are independent of to' the system is uniform controllable for Q 

on 1:;.0. When Q is exhibited before, after or during a stipulated interval 

of time TQ we have controllability for Q before, after or during T q . 

The notions below follow immediately. The set 1:;.0 is called aontroZZabZe 

for Q at to and the union of such sets (maximal 1:;.0 in 1:;.) is called the 

region of aontroUabiZity for Q at to' denoted I:;. • When F(·) ,Q are 
qt 

independent of to' we have the region of uniform aoJtroUabiZity for Q, 

denoted I:;. • Finally when the appearance of Q is referred to T , we have q q 
the region of uniform controllability for Q before, after (ultimate con-

trollability) or during T , denoted 
q 

I:;. (T ) 
q q 

All three regions are sub-

sets of the Q-zone and any subset of I:;. I:;. or I:;. (T ) 
qt o ' q q q 

controllable. When the region covers I:;. the corresponding 

is called aampZete. 

is correspondingly 

controllability 

When F(·) of Definition 3.1.4 is given, we acknowledge this fact by 

referencing the region accordingly: I:;. (P), I:;.q LP) or I:;. (T ,P), calling 
qto q q 

it the reaovery region for Q under P(·). The size of such a region, or in 

particular its diameter, determines what, following Schmitendorf [2J, we 

call the degree of controllability under F ( .) , defined by 

p(T ) = inf {llxO III xO € al:;. (F,T )} 
q q q 

which is the radius of the largest ball 11·11 contained in 

11·11 means any norm in RN. Obviously 

I:;. (F,T ) c I:;. (F) c I:;. 
q q q q 

(3.1.12) 

I:;. (P,T ) • Here 
q q 

(3.1.13) 

Next, we want the controllability robust against all options of uncer

tainty, that is, irrespectively of what the uncertainty does. This is called 

a strong mode of aontroZ, specified as follows. 
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DEFINITION 3.1.5. The system (2.2.6) is strOrI{JZy aontroUabZe for Q on 

tJ.o at to if and only if there is a program P ( .) such that for each 
-0 A - -0 - 0 
X € '"'0' motions ¢l(x ,to'·) exhibit Q for all ¢l(.) € K(x ,to). When 

P(·) , Q are independent of to' the system is strongly uniform aontroUabZe 

for Q on tJ.o ' and when Q is qualified by a stipulated time interval TQ, 

so is the controllability. 

Again tJ.o is called strongly controllable for Q at to and the union 

of such sets (maximal such tJ. o) is called the region of strorI{J aontroZZabiZity 

for Q at to' denoted tJ.Qto • In case of to-independence we have the region 

of uniform strong controllability for Q, denoted tJ.Q• We shall also 

abbreviate the name as strorI{J region for Q. Finally when Q occurs before, 

during or after TQ , we add these qualifying notions to the name of the 

region and notation, that is, tJ.Q(TQ). Here again when the region covers 

the entire tJ., the corresponding strong controllability is aompZete. 

By obvious implications applying between the defined types of controll

ability, we have 

tJ.Q(TQ) C tJ.Q C tJ.Qto ' (3.1.14) 

tJ. C tJ. 
Qto qto 

(3.1.15) 

and 

tJ. ctJ. • 
Q q (3.1.16) 

The control program P(·), briefly the aontroUer, of Definition 3.1.5 is 

called robust aontroUer, later also a llJinnirI{J controller. When P(·) is 

given we have the strorI{J reaovery region tJ.Q(P) , possibly qualified by 

TQ : tJ.Q(P,TQ). Moreover, in a similar fashion as for controllability, its 

size (diameter) gives the degree of strong controllability determined by 

(3.1.12) but with atJ.Q(p,TQ) replacing atJ.q(p,Tq) . 

Since the strong controllability with given P(·) implies the strong 

controllability, we have 

(3.1.17) 

EXAMPLE 3.1.3. Consider a damped oscillator with the scalar motion equation 

q + uq + wk(q) = 0 (3.1.18) 

and let u = P(q,q) be the control program satisfying the positive viscous 

damping requirements (2.4.7) and (2.3.12): 
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P(q,q)q > ° , q t- ° and P(q,O) :: ° . (3.1.19) 

Suppose Q is defined to be a node (non-oscillatory) type behavior of the 

trajectories of (3.1.14) near its basic equilibrium. From the elementary 

theory of oscillations u ~ 21; yields such a node, while its contradiction 

u < 21; yields a focus. with the bound on uncertainty W: W E [-l,lJ 

the worst the uncertainty can do occurs when w(t) :: 1 . Then the system 

is strongly controllable for the node on ]R2 for P(q,q) ~ 2, which means 

that apart from P(q,q)q > 0, q t- ° and P(q,O) :: ° the damping coeff-

icient used must be for all q, q bounded below by 2. These are the only 

restrictions upon the choice of the robust program to generate the node at 

the basic equilibrium. Consequently there is much freedom left for design

ing P(·) to serve other purposes in addition to the node, say, for instance 

shortest time approach to the equilibrium, etc. o 

For many objectives Q the region of strong controllability /:,Q is 

essential in applications but not easy to determine. We shall discuss 

various methods leading to the latter when referring to particular Q's, 

but it is convenient to introduce now a barrier type estimate of /:,Q which 

can be used in all the cases. 

Since only /:,Q n /:, is of interest, we may as well simplify notation 

assuming ~Q c ~ and thus bounded, with finite diameter. This also means 

that the degree of strong controllability is assumed of finite value. Let 

~ be a surface that separates /:, into two disjoint open sets /:,P and 

C/:,P ~ /:, - /:,P, the first enclosing /:'Q' called interior, the other called 
P exterior, see Fig. 3.2. The surface 53 will act as a repel lor from /:, for 

at least one motion of (2.2.6) '. 

Fig. 3.2 
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DEFINITION 3.1.6. The surface $.5 is weakly P(·) -nonpermeable, if and only 

if given the robust P(.) generating Q and given xO E $.5 there is w* (.) 

such that for some to' and corresponding motion <ii (x 0, to' .) E K (x o , to) , 

we have 

- -0 + P 
<P (x , to,JR ) n f1 = <P (3.1.20) 

for all ii E P(x,t) . 

Obviously P(·) will still generate other motions which will not be 

prevented from entering f1Q and exhibiting Q. But the "spell" o~ P ( .) is 

broken, in that from $.5 on, it is unable to dominate the scene completely. 

Indeed, the above contradicts the strong controllability for Q and by 

definition of !'!.~ the weakly P(·) -nonpermeable surface $.5 must belong to the 

complement C!'!.Q = f1 -!'!.Q. When $.5 is smooth, with non-zero gradient 
-Q!'!. Q Q P n = (nl, ... ,nN) directed away from f1 , we conclude from Definition 3.1.6 

that x O E $.5 implies that the angle r (nQ,f) is smaller than 90°, which 

means that for each x E $.5 

(nQ)T.i(x,u,w*,t) ~ 0 (3.1.21) 

for all u E P(x,t), t ~ to' cf. Section 2.4, Fig. 2.11. Such (3.1.21) 

establishes the necessary condition for weak P(·) -nonpermeability of $.5. 

Any $.5 on which (3.1.21) holds may be considered a legitimate candidate for 

a weakly P(.)-nonpermeable surface. Such a candidate must be confirmed by 

some sufficient conditions. 

CONDITIONS 3.1. 2. A surface $.5 separating !'!. into two disjoint open sets 

f1P,c!'!.P is weakly P(.)-nonpermeable, if given P(·) there is w*(·) and a 
1 f1 P 

C -function VB ( .) : DB -+ JR, DB = N ($.5) n!'!. ,. where N ($) is a neighbor-

hood of $.5 , such that for all x E DB , 

(i) VB(x) < VB(~) , v: ~ E $.5 , 

(ii) VVB(x)Ti(x,u,w*,t) ~ 0 (3.1.22) 

for all U E P(x,t) , t ~ to 

The above conditions follow immediately from the contradiction between 

(i) and (ii) arising when the motion concerned leaves $.5 into !'!.p. The same 

argument proves the conditions with the inequalities of both (i) and (ii) 

reversed. Observe, moreover, that when $.5 is specified by a VB-level with 

VVB{x) = nQ of 0, by the argument leading to (3.1.21), condition (i) is 
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automatically satisfied and condition (ii) becomes also necessary. Thus 

we have ... 

COROLLARY 3.1. 2. When the surface $ in Conditions 3.1.2 is defined as a 

vB-level, condition (ii) of Conditions 3.1.2 is necessary and sUfficient 

for weak P(·) -nonpermeability of $. 

Obviously there may be many weakly P(·) -nonpermeable surfaces in C6C . 

As 6C has a finite diameter, there exists in C6C a weakly P(·) -nonpermeable 

$ which is "closest" to (Mc in the sense that there is no other such $ 

between it and the boundary (Mc . 

DEFINITION 3.1.7. A weakly P(·)-nonpermeable surface which is "closest" to 

(MQ in the above sense (or 

barrier for Q and denoted 

the boundary itself) is called the weak P(·)

BP • q 

Such a weak P(·) -barrier consists of points closest to d6Q wherefrom 

the strong role of P(·) is contradicted, that is, a leak may appear, with 

the "leaking" motion exhibiting no Q.. Consequently B~ is defined as the 

lower bound of (3.1.22) and estimates 6Q from above. In ideal circumstances 
P 

Bq = d8Q • Further properties of such a barrier as well as its use in 

determining 6Q are left to our discussion on particUlar objective properties 

Q later in the text. 

EXERCISES 3.1 

3.1.1 Investigate the stability of the basic equilibrium (0,0) for the 

system 

using 

3.1.2 Using show that the basic equilibrium (0,0) 

of the system 

is asymptotically stable in the region Ixzl < 1 . 
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3.1.3 Find the region of asymptotic stability for the scalar system 

x = + x (x - 2) • 

3.1.4 Discuss the stability of the basic equilibrium (0,0) of the follow

ing systems using the indicated test function. Find the regions of 

attraction wherever appropriate: 

(i) xl Xz , V 3X~ + 6x l x Z + 3x Z 
2 

X2 - 2Xl - 3x Z 

(ii) Xl 
eX) - Xz , V 2 

Xl + 2 X2 

X2 Xl , 

(iii) xl sin (Xl - Xz ) V X1 X2 , 
x 2 sin (x2 - xl) 

(iv) 3 
V qq q q 

(v) Xl Xl + 4X2 V 2 8x l + llxlxZ + 5x2 
2 

X2 - 2Xl - 5x 2 

(vi) xl -X 
1 

+ 6x 2 V 3x2 
1 

+ 14x l x Z + 8x; 

X2 4Xl + X2 

3.1.5 Show that trajectories of the system 

- X 2 - X Ix 2 + X 2 
1 1 2 

Xl - x2Ixi+x~ , 

form a center at (0,0), that is, are stable in the line'ar 

approximation, while in fact (0,0) is an asymptotically stable 

equilibrium (focus). For full discussion, use the critical 

points classification known from your differential equations 

course. 

3.1.6 Find a test function V(·) for asymptotic stability of (0,0) for 

the system 

and confirm that the region of attraction is defined by 

z 2 (xl/a) + (x 2/b) < 1 . 

3.1.7 The motion equations of a gyroscope without external forces are 
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Jll.i\ + (J 3 -J2 )W 2W3 0 

J 2W2 + (J I -J3)W 3WI 0 

J 3W3 + (J 2 -J I )W IW2 0 

where J i principal moments of inertia and Wi angular velocities 

about principal axes, i = 1,2,3. Let WI = Wo + xl' W2 = x 2 ' 

W3 x3 ( Wo = const). Show that the origin is stable if 

J I < J 2 < J 3' using 

3.1.8 Consider the system 

Xl x 2 ' 

*2 - 2x 2 - 2xI - 3x~ 

Investigate stability of the basic equilibrium (0,0) with 

V = x~ + x~ Determine the other equilibrium and apply a suitable 

transformation of coordinates to move (0,0) to this equilibrium. 

Write the new equations of motion in 0'~1~2 and using 

V = (~~/2) + ~~ + ~i investigate the stability about the new 

origin. 

3.1.9 Using the Liapunov Matrix Equation, prove asymptotic stability of 

the origin for 

(i) ( ::J (~ ~~ ][::J 
(ii) ~, ] 2 1 '1"] x 2 0 2 o x 2 

x3 0 -1 2) x3 

(iii) r' ] -2 -7 -5], ] x 2 · 0 -5 -3 x: • 

x3 0 0 -6 x3 
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3.2 STABILITY OBJECTIVES 

In general, we need more specified definitions of stability than those 

given in Section 3.1, if we deal with the uncertain nonautonomous system 

(2.2.6)' instead of (2.1.4). The stability of a set defined below covers 

stability of an equilibrium, ultimate boundedness of motions and orbital 

and structural stabilities - the main objectives of stabilization. 

Suppose M is a subset of to and let M(t) denote at-section of 

M: M(t) xJR~M If there is a compact (bounded and closed) toM c JRN 

such that M(t) c toM for all t , then M is bounded, and thus compact if 

closed. Assume the latter. Then let p(x,y) be the distance between 

points 
N 

x,y ~JR For some t , the distance between a point x(t) 
N 

EJR 

and the set M(t) is determined by 

p(x(t),M(t)) ~ inf p(x,y) iYEM(t) (3.2.1) 

We may define now the first objectives of stabilization. Let too be a 

subset of to, and recall that by their defining properties the trajectories 

of (2.2.6) and motions of (2.2.6)' are solutions of the corresponding 

selector equations (2.2.5) and (2.2.5)' with u,w substituted. 

DEFINITION 3.2.1. M is said to be stab le with respect to motions of 

(2.2.5)' on too XJR, if and only if for each € > 0, to E:JR there is 

0> 0 such that XO E too' P(xo,M(t o)) < ° imply P(ji(xO,to,t),M(t)) <€, 

for all t 2': to' When °0 does not depend upon to' M is uniformly stable 

on too' M is unstable if and only if it is not stable. See Fig. 3.3. 

~ 
i3.tJ. ot-------+----'<--:p ----------'""\ 

E 

" >'" ,~ 
01-

- - -"<------------\ 
------t~ STABILITY 

00 +------- '--.. 

~SyMPTOTfC ~BILiTcITy ......... 

Fig. J. J 
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DEFINITION 3.2.2. M is an attractor (repe l lor) for motions of (2.2.5) • 

1::,.0 x lR if and only if for each E: > o , to € lR there is °0 > 0 such 

that se O 1::,.0 and p (xo ,M(t o) ) < °0 implies - -0 - -+ 0 € p(~(x ,to,t),M(t» , 
t -+ 00 (t -+ _00). When 00 does not depend upon to we have unifoY'l7l 

attraction (repulsion). 

on 

as 

Note that M being an attractor does not imply stability, as the motion 

may escape to infinity and return before approaching M. This is the reason 

behind calling the attraction quasi-asymptotic stability, see Antosiewicz 

[lJ, Yoshizawa [IJ. The set of all xO E I::,. wherefrom motions are uniformly 

attracted to M is called the region of unifoY'l7l attraction, denoted I::,.AT. 

DEFINITION 3.2.3. M is asymptotically stable with respect to motions of 

(2.2.5)' on 1::,.0 x R if and only if it is a stable attractor on this set. 

It is uniform asymptotically stable if and only if it is a uniformly stable 

uniform attractor. M is completely unstable if and only if it is an 

unstable repellor. 

The set of all xO • s in I::,. at which M is uniform asymptotically stable 

is called the region of such stability, denoted I::,. 
as 

So far M was an arbitrary compact set in 1::,., which may be specified 

by a motion or motions of (2.2.5)' or not. The first case leads to stability 

of an equilibrium. 

DEFINITION 3.2.4. Given a control program P (.) , a set M e b. x lR is 

positively (negatively) invariant under P(·)-generated motion of the selector 

and only ~f -0 ::h -0 + equation (2.2.5)' if • (x ,to) € M implies 'I'(x ,to,lR ) e M 

( ~ (x o , to' lR-) eM). If both, that is, (x o ,to) E M implies 
- 0 ~(x ,to,:R) eM, it is invariant under the motion. 

DEFINITION 3.2.5. Given P(·) , a set Me b. x lR is positively (negatively) 

strongly invariant under P(·) -generated K -0 (x ,to) if and only if 
-0 

,to) E M tX implies 
-0 + 

<P (x , to' lR ) eM -0 -(<P(x ,to,lR ) e M) • If both are 

true, that is, -0 
(x ,to) E M implies <P -0 (x ,to,lR) eM, then M is called 

strongly invariant. 

The same two definitions hold uniformly in to for the autonomous 

(2.2.5) and (2.2.6). Let M be a map of M into 1::,.. The semi-invariances 
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(positive, negative) and the invariance are defined by xO E M implying 
- 0 + - 0 ~ 
<P(x ,lR-) eM, <P(x ,lR) eM, respectively, while the strong invariances 

are defined correspondingly by xO E M implying ~(x~lR±) c M and 

~(xo,lR) c M 

As already mentioned, trajectories of (2.2.6) and motions of (2.2.6)' 

are solutions of (2.2.5), (2.2.5)' respectively, with u,w substituted. 

Then the invariant sets for (2.2.5), (2.2.5)' are correspondingly those for 

the dynamical systems (2.1.4), (2.1.15). 

A positively (negatively) invariant or invariant set is termed minimal 

if and only if it is closed and does not contain any other set of the same 

type. The same applies to strongly invariant sets. 

The steady state trajectories of (2.1.4) and steady state sets of 

(2.1.15), see Section 2.1, are minimal invariant. In Section 3.4 some will 

become minimal strongly invariant for (2.2.6) and (2.2.6) '. In this 

section we refer to equilibria only. 

For (2.1.15) the minimal invariant M will thus be defined as the 

t-axis extension of an equilibrium xe specified by (2.1.16): M= {xe } x R. 

For (2.2.6)' with unknown ii.i, the relation (2.1.16) becomes f(xe,u,ii.i,t):: 0 

with given il = il*, leaving xe unknown but bounded within the set 

Xe(u*) ~ {xElIlf(x,u,ii.i,t)=O,vt~to,il=u*,WEW}. (3.2.1) 

On the other hand, the reference equilibrium must be chosen compatible with 

the energy reference frame of Section 2.3. The latter is based on the 

nominal E (x) obtained by substituting an extremizing w* into E (x, w) , 

with extrema of such E(x) coinciding with the equilibria, see Section 2.3. 

Consequently we obtain the equilibrium from the selector (2.2.5)' with ii.i* 

substituted, that is, from the adjusted (2.1.16) which now, given u, 

becomes 

(3.2.2) 

Obviously we can shift the equilibria by changing u and/or by using 

suitable compensation in IT(q,w*), either in gravity or in the elastic 

component. Since we know W, such a shift may cancel the influence of w 

and go beyond xe, limited only by the constraints U or the capacity of 

the compensation. The balancing role of control and compensation in 

influencing the equilibria becomes visible when we express (3.2.2) in terms 

of characteristics. Then from (2.1.10) and (2.3.12), (2.3.13) we obtain 

for specific u,w 
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q (3.2.3) 

For the autonomous system: R = 0 this means that the controller 

balanced the potential characteristics, which usually are subject to design 

synthesis. On the other hand, the distribution of control load (forces or 

momenta) among actuators acting on particular DOF's is also a part of the 

design of the mechanical system. It plays a particularly important role in 

the control of flexible structures, recall Section 1.8. If V1' •.• 'Vr are 

the weight-parameters of such a distribution, the relation 

<I>(V1, ..• ,Vr,F1(·), .•• ,Fn (·» = 0 (3.2.4) 

specifies a distribution law for the actuators. For instance, in the case 

of linear distribution with r = n (robotic actuators), we shall have for 

given u,w, 

I. v. F. (q,q,u,w) = 0 • 
1. 1. 1. 

(3.2.5) 

with fixed IIi (.) , the equilibria move with varying u in the Configuration 

Space JRn defined by q = o. By (3.2.3), (2.3.3) such motion is located 

on the surface 

dV 
<I> (v l' ••• , V r' -,,- , ••• , 

aql 
adV ) = 0 
~ 

or vectorially with 
T 

V = (V 1 ' ••• , V r) 

(3.2.6) 

const on 

(3.2.7) 

in ~ . Assume for the moment that we are not interested in design synthesis 
q 

(compensation in n· (.) ), that is, that the gradient IlV(q) is given. Then 

by (3.2.7), the position of the vector V with respect to the gradient may 

specify the motion of the equilibrium. For instance, in the case of the 

linear distribution of control loads (3.2.5), we have 

T -'i7V(q) ·V = 0 (3.2.8) 

making the geometric locus of controlled equilibria into a set of points in 

~ where V is orthogonal to the gradient, that is, tangent to the E-levels. 
q 

The reader may note here that when such motion of the controlled equilibrium 

crosses the uncontrolled equilibrium: 'VV(q) = 0, the distribution vector 

V becomes arbitrary, thus undefined. 

It is convenient to place the origin of JRN in the reference equilib

rium whose neighborhood is of interest, making it x(t) = 0 with the minimal 

invariant set taken as the t-axis: M = {a} x R. Definitions 3.2.1-3.2.3 

apply immediately with p(x(t) ,M(t» = Ilx(t) II ' where 11·11 is any norm in 

RN 
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DEFINITION 3.2.6. The motion x(t) _ 0 of (2.2.5)' is unifo~ly stable 

on 1::.0 if and only if for each E > 0 there is a > 0 

Ilxo II < a implies that Ilcp (x o ,to,t) II < E, t ~ to 

asymptotically stable on 1::.0 if and only if there is 

Ilxo II < 00 implies ~(xo ,to,t) + 0, t + 00 

such that x O E 1::.0 ' 

It is unifoY'l7l 

00 > 0 such that 

The above definition extends from x(t) = 0 to any motion of (2.2.5)' 

as long as it is given by using the technique introduced for relative state 

representation in Section 2.1, see (2.1.6), and the subsequent discussion. 

The latter is immediately augmentable to our nonautonomous system (2.2.5) '. 

Indeed, if xm = ~(x!,to,t), t ~ to 

x = Y + x (t) , (2.2.5)' becomes y = I::. ____ m 
= g(y,u,w,t) with g(O,u,w,t) = 0, 

is the given motion, setting 

f(y+x (t),u,w,t) -f(x (t),u,w,t) 
m m 

and given ii,w, the stability of 

y(t) = 0 is covered by Definition 3.2.6. 

As mentioned in Section 2.1 and what we shall see later in detail, the 

reference curve relative to which we investigate the stability of motions, 

or other behavior for that matter, may not be a motion at all. We may, 

using a suitable control program for um(t), make it a motion and then, using 

the transformation x + y of above, investigate the equilibrium of the 

relative system. Alternatively we may treat the curve directly as M and 

apply Definitions 3.2.1-3.2.3, as suggested in the first place. 

Sufficient conditions for controllability and strong controllability 

for stability and asymptotic stability can be obtained by adapting the 

classical arguments used in proving the stabilities, see Yoshizawa [IJ. 

CONDITIONS 3.2.1. The system (2.2.6)' is controllable for uniform stability 

of x (tl = 0 on 1::.0 ' briefly stabiUzable on 1::.0 about x (t) = 0, if there 

is, a program P ( • ) defined on 

V(O,t) = 0, such that for all 

1::.0 x JR and a C1-function V(·): 1::.0 xJR+:R , 

(x,t) E 1::.0 x JR , 

(i) a(llxll):!> V(x,t) :!> b(llxll) , where a(·),b(·) are 

positive, continuously increasing functions: 

(ii) for each u E P(x,t), w E W , 

aV(x,t) T-
at + I7xv(x,t) f(x,ii,w,t) :!> 0 • (3.2.9) 

To prove the above, first we show stability. As V (.) is continuous 

and V(O,t o) = O. there is O(E,to) > 0 such that Ilxoll < a implies 

-0 ) V(x ,to) < atE • (3.2.10) 
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Suppose instability, that is, that cjl(t) crosses /lill = E. Then, there is 

t1 > to such that 

tion (ii) implies 

cjl(XO,t O,t1) = xl, IIx 111 = E. On the other hand, condi-

( -1 ) (-0) () (-1) ) V X ,t1 S V x ,to ' thus by 3.2.10, V x ,t1 < a(E 

contradicting (i), whence proving stability. Now by choosing the above 

O(E) > 0 such that b(o) < a(E) 

show that Ilioll < O(E), to E:R , 

proves uniform stability. 

for all to' by the same argument we may 

then Ilcjl(xo ,to,t) 11< E, t ~ to which 

CONDITICNS 3.2.2. The system (2.2.6) I is strongly controllable for the 

uniform stability of i(t) = 0 on 60' briefly strongly stabilizable on 

60 about i(t) = 0, if Conditions 3.2.1 hold but (ii) is replaced by the 

following: 

(ii) I for each U E P(i,t) , 

OV(x,t) _ T- - - -
ot + 'i7xV(x,t) f(x,u,w,t) s 0 (3.2.11) 

-for all w E W • 

Indeed, replacing the motion cjl ( . ) in the proof of Conditions 3.1.1 by 

some cjl(.) E K(iO,t o) of (2.2.6) I, we obtain the same contradiction, which 

then proves the hypothesis for all motions from K(iO,t o) • 

The above conditions have an immediate conclusion which gives the 

possibility of defining a suitable robust controller. Denote L(x,u,w,t) 

~ oV/ot + 'i7 V(i,t) ·f(x,u,w,t) • 
x 

COROLLARY 3.2.2. GiVen (xo ,t) E 60 x JR, if there is a pair (u*,w*) E U xw 

such that 

L(i,ii*,w*,t) min max L(x,u,w,t) so, 
ii w 

then condition (3.2.11) is met with u* E P*(x,t) 

The Corollary follows immediately from the fact that 

min max L(i,u,w,t) ~ min L(x,u,w,t) 
ii w ii 

for all w E W. The obtained robust controller will be called energy 

dissipative. 

For the objective of asymptotic stability, we shall go directly to the 

strong mode, then the weak mode follows. 
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CONDITIONS 3.2.3. The system (2.2.6)' is strongly controllable for the 

uniform asymptotic stability of x(t) = 0 on ~o' briefly strongZy 

asymptoticaUy stabiZizabZe about x(t) - 0, if Conditions 3.2.2 hold with 

(ii) , replaced by the following: 

(ii)" for each ii 10 P(x,t) , 

(3.2.12) 

for all w € W, where c ( . ) is a continuous posi ti ve definite 

function on ~o. 

Indeed by Conditions 3.2.2, x(t) = 0 is uniformly stable, for all 

motions (ji (x o , to' .) 10 K (x o , to)' (x o , to) € ~o x JR, thus we must only show 

that it is a uniform attractor. We do it adapting the arguments of 

Yoshizawa [IJ. 

Let us define ~o : II x II < ex, ex > o. The uniform stability implies 

that there is a 1 > 0 such that II xOIl < a l' to € JR yields 

11<p(x o ,to,t) II < ex, for all t ~ to' and all ~(xo ,to'·) € K(x o ,to) 

Indeed by the same argument as for (3.2.10), we have V(xO,t o) < a(ex) which 

is contradicted upon crossing a~o by some motion from ~o. 

By the same uniform stability for each E: > 0, there is a (a) > 0 

suchthat IIxoll < 0, to €JR implies 11<p(xO,to,t)II<E: for all 

<P(x o ,to'·) 10 K(x o ,to) and all t ~ to. We will now show that Ilxo II < 01' 

to 10 R implies 11<p(xO,to,t)II < o(a) as some t, for some <P(.) €K(xO,t o). 

Suppose that 0(E:) ~ 11<p(xO,to,t) II < ex, for all t ~ to' <P(.) 10 K(xO,t o) 

Since there exists a c > 0 such that V(x,t) ~ -c on a ~ Ilxll < ex , 

integrating we have 

(3.2.13) 

For t ~ to+T, T = [b(Ol) -a(o)J/c we have V(xO,t o) -c(t-to) < a(o), 

because V(x o ,to) ~ b(ol). By (3.2.13), V(<P(x o ,to,t) ,t) < a(o) which 

contradicts V(<P(x o ,to,t) ,t) ~ a(o). Thus, at some to such that 

to ~ tl ~ to +T, we must have 11<p(xo ,to,t l ) II < 0(E:) for all <P(x o ,to'·) 

€ K(xo ,to). Hence, if t ~ to + T, we have 11<p (xo ,to ,t) II < E: with T 

depending only upon E:, which generates uniform attraction, and completes 

the proof. 

Similarly as before, we have the immediate conclusion making it poss

ible to design a dissipative P(·) . 
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COROLLARY 3.2.3. Given (x,t) E /::'0 x JR, if there is a pair (u*,w*) E U xw 

such that 

L(x,u*,w*,t) min max L(x,u,w,t) :<;; -c(llxll) (3.2.14) 
u w 

then condition (3.2.12) is met with u* E P*(x,t) 

EXAMPLE 3.2.1. Before analysing the above conditions in the full context 

of our model, let us briefly illustrate their work on a simple pendulum of 

Example 1.1.1, see Fig. 1.1. The state equations concerned are 

} (1.1.6) 

and we consider a neighborhood of the basic equilibrium (0,0), that is, the 

region /::'qE -TI < xl < TI which allows us to reduce (1.1.6) to 

(3.2.15) 

The test function selected will be the total energy 

x 2 (X2 .. ) 2 1 xl 
= - + - - - (g/R,) 2 2 24 

with its time derivative = power: 

(3.2.16) 

Letting V(x,t) = E(X1,x Z) we obviously have condition (i) satisfied within 

the whole cup about (0,0) and in the absence of uncertainty the asymptotic 

stabilizability of (0,0) depends on whether E(Xl,X Z) can be made negative 

definite, say, 

with d > 0, C > o. This gives the control program determined by the 

condition 

2 
U sgn X2 :<;; dX 2 - c 

determining the choice of a controller. More economically, following 

Corollary 3.2.3, we need 

min (u sgnx z ) :<;; dX~ - c 
u 

(3.2.17) 

to satisfy condition (ii)" for our system. Note that so far there is no 

uncertainty. This means 
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which defines the set valued dissipative program 

P(·) u(t) E [-dx; +c, dx~ -cJ . 

Here c > 0 is best chosen while actually substituting P(x) into the 

equations for the purpose of numerical simulation. It may be guessed now, 

but will become clearer later, that c actually estimates the rate of 

change of E(x(t» along the motion concerned. 

Let us suppose now that the damping coefficient d is for some reason 

uncertain and allowed negative, say, W: -1 :s; d ~ 1, which will naturally 

oppose our asymptotic stabilization. Since the uncertainty is only in 

damping, it does not affect E(x) itself and we still have the reference 

frame H untouched, the cup ZE being well defined. The power (3.2.16) is 

however already affected and the control condition (3.2.17), which implies 

condition (ii) I now becomes 

min (u sgn x z) :s; min (dX~) - c (3.2.18) 
u d 

which simply means 

min (usgnx z) :s; -(x;+c) , 
u 

making the robust dissipative controller defined by 

t: for Xz ~ 0 
(3.2.19) 

for Xz < 0 

So far the system considered is autonomous although uncertain. Intro

ducing external perturbation R(t) , (3.2.15) becomes 

} (3.2.20) 

generating a slight change in our reasoning. Although the frame of reference 

H and thus the energy cup ZE still stays the same together with the basic 

equilibrium concerned, the power (3.2.16) is now expanded by an extra term: 

wherefrom (3.2.18) becomes 

which means 

by 

P(x,t) 

:s; -R(t) sgnx z + min (dx~) - c 
d 

that the dissipative program P(·) is 

u(t) :s; -(X~+C+R(t» x 2 ~ 0 

u(t) ~ x~ +c -R(t) , Xz < 0 

(3.2.21) 

(3.2.22) 

non-stationary and defined 

} (3.2.23) 
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or, taking only equalities, has two branches 

u(t) = ±[x~ + c ± R(t)] , (3.2.24) 

for x 2 ~ 0, x 2 < 0 respectively. 

EXAMPLE 3.2.2. Let us now extend Example 3.2.1 to the case of the coupled 

pendula of Example 1.1.2, see Fig. 1.6. Equations (1.1.3) with the substi

tuted characteristics and written in the state format become 

Xl Xa 

1 X2 x 4 
(3.2.25) 

xa -d l !X3 1X 3 - (g/R.) (xl _ 1.. x3) a 2 k(X l -X 2) + u l 

. J 
6 1 

X4 -d 2 !x4 !x4 - (g/R.) (X Z _ 1.. x3) + aZk(X 1 - XZ) + U z 6 Z 

We maintain the same asymptotic stabilization objective as in the 

previous Example 3.2.1 and use the same conditions with V(x,t) = E(x) , 

which now is 

E(x) = 1.. (x 2 + x2) + [1.. (x z + XZ) _ ...L (x 4 + x 4 )] (g/R.) + -Zl aZk(x l _ X2) 2 • 
Z a 4 2 1 L Z4 1 2 

(3.2.26) 

This obviously preserves the reference energy surface H and the cup 

ZE in the same shape as in Example 3.2.1, satisfying condition (i) of 

Conditions 3.2.3. Calculating the power, 

(3.2.27) 

Assuming again uncertain d i , i = 1,2 bounded by W: -1 S d i S 1 , we 

have, by Remark 3.2.3, Condition (ii)" implied by the condition corresponding 

to (3.2.18) which is now calculated as 

(u. sgn x 2 .j 
~ +~ 

S min 
d. 
~ 

i 1,2 . (3.2.28) 

Because of the additive character of (3.2.26) and (3.2.27), the control 

condition (3.2.28) applies generally for i = l, ••• ,n , and illustrates the 

procedure of obtaining algorithms for robust controllers in our later cases. 

Substituting the bounds of W, we have 

min (u. sgn x2+i ) S -[x~+i + (c/2) ] i 1,2 
~ 

(3.2.29) 
u. 
~ 

making the vector program f>(.) defined by 
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P. (x) 
~ 

2 - (x2+i + c/2) , 

(X 22 • + c/2) , 
+~ 

for (3.2.30) 

for ~ 0 

Needless to say that in the nonautonomous case, when perturbations Ri (t) , 

i = 1,2 are added to the right hand sides of equations (1.1.3) and thus 

also to the dynamic equations of (3.2.25), we have by the same argument as 

in Example 3.2.1, the non stationary dissipative P(x,t) defined by 

Pi(x,t) : u(t) = ±[x~ . + c/2 ± R(t)J (3.2.31) 
+~ 

for x 2 ~ 0 , x 2 < 0 respectively. D 

EXAMPLE 3.2.3. We shall illustrate the asymptotic stabilization on a 

slightly longer case study. 

A retrieval of a tethered satellite under rotation is an unstable 

procedure, see Misra-Modi [lJ. Banerjee-Kane [lJ and Xu-Misra-Modi [lJ 

apply thruster-augmented control to such a procedure to stabilize it. A 

simplified version of the model used by the latter two works was produced 

by Fudjii-Ishijima [lJ, ignoring flexibility and mass of the tether as well 

as the atmospheric influence, but emphasising the fundamental aspects of 

the case and applying Liapunov control technique with full nonlinearity. 

Below we follow this work. The system is shown in Fig. 3.4. The satellite 

is considered a gravitational body S which is to be asymptotically stab

ilized, the auxiliary subsatellite mass m is sufficiently small so that 

CG of the shuttle remains in its nominal orbit after deploying the tether, 

and no motion of m influences the shuttle. The tether is very long but 

Fig. 3.4 
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mass-less. The controller acts along the tether through its tension F and 

no other control force or energy dissipation exists perpendicularly to the 

tether. Let 5/,m be the desired length of the tether for doing its assign

ment (deployment or retrieval of S) and let 5/,0 = 5/,{t o) be the initial 

length. Then with the angular velocity w of the satellite S in its orbit, 

we take the dimensionless time T = wt and form the dimensionless deflec

tions 1 = 5/,/ \ 5/,0 -!I, \ and controls u = u/ (m w2 \5/, 0 - 5/, I). Following 
m m 

Fudjii-Ishijima [lJ we may now write the motion equations as 

00 0 0 } (3.2.32) 
4> + 2 (1/5/,) (I +4» + 3 sin 4> cos 4> = 0 

Here the circles above 5/, and 4> denote differentiation with respect to 
o x-IJ.~ ~oT . 

T : (-) = d{-)/dT. Considering the state = (5/,,4>,5/,,4» , our goal ~s 

to asymptotically stabilize x{t) _ O. We do it with the test function 

v [ $ ) 2 + b [ sin 4> ) 21 
13 sin (1T/4) 2 sin (1T/4) _ 

(3.2.33) 

where the second term re fers to deployment and retrieval, while 4> is the 
o 

normalized modulo 1T/4 and 4> with the latter multiplied by 13 From 

(3.2.32) and (3.2.33) we obtain 

-v 

Then assuming b i = b 2 we choose 

u = 1;2 + 21$ + 31 cos 2 4> + (a2/a i ) (I-1m) exp a 2 (I-1m) 2 

- (4bi/3ai)~{~ +l)/{I+c) 
o 

where c (x) is an arbitrary suitable function. Substituting c = (k/a i ) TIv , 
k > 0 gives 

and then 
o 

JT ~~2 
V{T) V{O) exp ( - kU dT) 

o 
with the plot shown in Fig. 3.5 in log scale. 

The decoy of V{·) is slow after 100 min. because the control program 

is not adaptive. We shall discuss the adaptive control in Chapter 7. 
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10-1 L-----+------i-----f----i. t (min) 
100 200 300 

Fig. 3.5 

Fudjii-Ishijima [lJ give some simulation results assuming the circular 

orbit for the shuttle of 6220 kIn with orbital speed 7.065 x 10- 2 rad/min. 

with the dimensions of ~ = 1 kIn, i = 12.66 kIn/min, ~ = 100 kIn, 
m 

a a 2 = 5 , b = 1 , k = 100 , and initial values <po = o , <po = 0, 
1 I 

iO o , <pO o , ¢ = 0 the deployment is shown in Fig. 3.6. 
m m m 

Sketch (al shows the position in Oxy while sketch (bl shows the length 

of the tether. The retrieval case is shown in Fig. 3.7, with ~ 100 kIn, 

£ 1 kIn, and iO = o , <pO o , ¢O o , i = o , <p = o , <Pm o , m m m 
a l 0.5 , a 2 = 2 , b l = 5 , k 100 

The deployment destabilizes at the distance about 50 km, before 

stabilizing at 100 km, while the retrieval destabilizes twice at ahout75km 

and 25 km before the terminal stabilization. 

ykm xkm { km 

-50 
100 

50 

--~-------!~------~------~--t(min) 
100 200 300 

(0 ) (b) 

Fig. 3.6 
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x km f km 
ykm 

50 -50 

101 

50 100 

101 

100 10-2 t (min) 
100 200 300 0400 

Fig. S.? 

o 

EXERCISES 3.2 

3.2.1 Show that the set M = {a} is minimal invariant for trajectories 

of • l 
X = -x , t ~ a with 

3.2.2 Design a controller to stabilize the system 

about (0,0). 

3.2.3 Show that the program u l 
stabilizes the system 

Xl 
3 3 XIX~ xl - X 2 

X2 x3 3 2 
1 + xl + X1 X2 

l + u l - XlX 1 

2 + XlX l + u 2 

about (0,0) Find the region of such 

3.2.4 Find the control program asymptotically 

ql + <11 + <1l + ql = u l } • .2 
+ <1 + q2 q2 + q2q l l 

= u l 

-4X~ asymptotically 

stabilization. 

stabilizing the system 

about the basic equilibrium assuming that the trajectories start 

from the basic energy cup. 

3.2.5 For the scalar system X = (1/2)u(x -2), lui ~ 2, find feedback 

controllers making the origin asymptotically stable and find a 

region of such stability. 
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3.2.6 Discuss the same problem as above for the system 
• 3 
Xl = X2 - Xl ' X2 = - 2XI - X 2 + U 

3.2.7 Consider the system x = Ax + Bu with 

3.2.8 

A 
- sin a] 

cos a. 
a. const 

and lu.1 ~ 
~ 

U. const, and design the matrix B with appropriate 
~ 

dimension. Then verify that the free system: u(t) = 0 becomes 

r = r, 

in polar coordinates and show that the circles are invariant. How 

the trajectories in (r,e) of the forced system behave under 

dissipative controllers. Write a program securing asymptotic 

stability of r = 0 . 

(i) Consider the system 

2 
x l (x 2 -l)+u! 

2 
X 2 (Xl - 1) + u 2 

Using V = t (X~ + X~) , estimate the behavior of trajectories 

with respect to the V-level curves for u l = 0, u 2 = 0 . 

Show that the disc V(xl'x 2 ) ~ ~ is positively invariant. 

Sketch the trajectories. 

(ii) For the system of (i), find a feedback control program which 

makes (0,0) globally asymptotically stable. 

(iii) Write the system of (i) in time discretized format, find 

the discrete Liapunov function and discuss the stabilization 

of (ii) (optional). 

3.2.9 Consider the system 

and show that for its free version ui(t) = 0, i = 1,2, the 

origin (0,0) is globally asymptotically stable. Destabilize it. 

3.2.10 For the system 
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with controller u = x~ + x~ show that the region of asymptotic 

stabilizability (retrieving region) is defined by x~ + x~ $ 1 . 

3.2.11 Take V x~ + x~ as a test function for the Van der Pol system 

and prove the following: 

(i) If /3 < 0, then (0,0) is asymptotically stable and 

the circle x2 
1 

+ x2 $ 3 
2 is the region of such stability 

for any /3 • 

(ii) If /3 = 0, then (0,0) is stable but not asymptotically 

stable. 

(iii) If /3 > 0, then (0,0) is not stable. 

3.2.12 Find the trajectories of xl x 2 ' X2 = -Xl and show that the 

equilibrium is stable using V = ~ r2 , r = /x2 + x 2 . 
1 2 

Show that there is no region about (0,0) where the test function 

forms a threshold. 

3.3 STABILIZATION RELATIVE TO ENERGY LEVELS 

The concepts of stability, in particular that of asymptotic stability, 

are obviously local as they relate to an equilibrium or i(t) = o. Con

sequently they may only be used when a boundedness in a particular energy 

cup or a neighborhood of such equilibrium has been already secured. 

Another shortcoming of asymptotic stability is that in real scenarios, 

more often than not, we need a real (finite) time approach to a target set. 

Both of the above inconvenient features are avoided in the objective 

property of ultimate boundednessof the motions, which thus often complements 

the stability objective. It leads to stabilization below or above a certain 

E-level either in a cup or above one, or enclosing several cups. In fact it 

may also refer to the cup in-the-large. 

A motion of (2.2.5)' will be called bounded if and only if there is a 

bounded set lI/3 in II such that 

motion is called bounded on Borne 
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to E JR 

for all 

-0 A - 0 there is 6S such that (x ,to) E '"'0 x JR implies CP(x ,to,t) E 6 S 
Finally the boundedness on 6 0 is uniform if 6 S does 

It will be convenient to describe the sets 6 0 ,6S in 

terms of some norm II· II in JRN. specifically a test function V ( .). The 

not depend on to 

narrowing of generality for our purposes is negligible. In this sense, 

demanding boundedness of a motion we must require S > 0 such that 

11<ii (x o ,to ,t) II < S for all t 2 to . 

A different type of boundedness is obtained when we refer to terminal 

behavior of all motions. 

DEFINITION 3.3.1. The motions of (2.2.5) I are ultimately bounded on a set 

6 0 XJR c 6 XJR for bound 86B , if and only if there is a bounded subset 

6B c 6 and for each to E JR there is a constant TB > 0 such that 

(x o ,to) E 6 0 XJR implies 
- 0 CP(x ,to,t) E 6B for all t 2 to + TB The above 

boundedness is uniform if TB does not depend upon to. 

Observe that ultimate boundedness of motions on 6 0 x JR does not imply 

that the motions from this set are bounded. In fact, one can easily envisage 

the scenario that a motion escapes to infinity before entering 6 at the 
B 

So boundedness and ultimate boundedness are independent 

properties. Obviously for the autonomous systems, both are automatically 

uniform. For the ultimate boundedness as much as before for the boundedness, 

we find it convenient to specify 6B in terms of a norm in JRN and adjust 

Definition 3.3.1 to demanding that there is an independent bound B > 0 , 

and for each to E JR there is a constant TB such that (x o , tu) E 6 0 

implies II iii (xu, to' t) II < B, for all t 2 to + TB When 86B in general, 

or B in our case, is given a priori and I1B c 11 0 , we have the following 

property. 

DEFINITION 3.3.2. The set 6B c 6 is a real-time or finite attractor for 

motions of (2.2.5) I from some set 6 0 x JR ::J 6B x JR, if and only if the 

motions are uniform ultimately bounded on 6 0 x JR for bound 86B (or B). 

When TB is stipulated, we call 6B a stipulated time attractor, when 

6 0 is stipulated, we call 6B a practical attractor, see Fig. 3.8. 

Observe from the above definitions that both sets 6 0 and 6B are 

positively invariant. The largest 6 0 of Definition 3.3.2 is called the 

region of finite attraction, denoted 6BO . The following sufficient condi

tions imply the controllability for boundedness of motions. 
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AS x 1R 

I 
t' o 

Fig. 3.8 

CONDITIONS 3.3.1. The system (2.2.6) I is strongly aontrollable for uniform 

boundedness of motions on /::'0 x:R if there is a constant r > 0, possibly 

large, a program P(·) and a C1-function V(·) both defined on C/::' x [0,(0), 
r 

C/::'r ~ /::'0 -/::'r' /::'r : Ilxll < r, such that 

(i) a(llxll) :5 V(x,t) :5 b(llill) 

(ii) 

where a(·),b(·) are continuous functions and a(llxll) -+ 00 

as II x II -+ 00 ; 

for each U E P(x,t) we have 

aV(x,t) n - T - __ _ 
at + vxV(x,t) ·f(x,u,w,t) :5 0, v -

W E W. (3.3.1) 

Controllability is secured if (ii) holds for some given w. 

The conditions may be proved by following the same argument as in 

Yoshizawa [1]. Define /::'0 : II x II :5 a, and let a > r. By the properties 

of a(·) ,b(·) we may find S > 0 such that a(S) > b(a) Suppose now 

that the boundedness is contradicted along some motion: ~(iO,tO,tl) II = S 

at some tl > to. Since Ilxo 11:5 a there exist two values t 2 ,t 3 such 

that t o :5 t2 < t3 :5 t 1 , 11~(xo ,to,t2)11 =a, 11~(xo ,to,t3)11 = S implying 

a < 11~(xo ,to,t)11 < S, t E (t2,t 3). Then we must have V(~(t2) ,t2) :5b(a) , 

V(~(t3),t3) ~ a(S) , which contradicts (ii), proving the boundedness for all 

In the case of the weak mode of control (controlla-

bilityonly) the contradiction refers to the single motion at each (iO,t o). 

CONDITIONS 3.3.2. The system (2.2.6) I is strongly aontrollable on /::'0 x R 

for uniform ultimate boundedness of motions for bound B if the Conditions 

3.3.1 hold with (ii) replaced by 
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aV(x,t) - T - _ - - II_II -at + VxV(x,t) ·f(x,u,w,t) ~ -c ( x ) , v WE W . (3.3.2) 

Controllability is secured when (ii) I holds for a given W. 

The conditions may be verified by the same argument as applied to 

proving Conditions 3.2.3, see also Yoshizawa [IJ. Finally we arrive at 

for-the-level stabilization which involves the real-time-attraction 

objective. 

Given the set liB in some olio' denote ClIB ~ lIo -liB and let an open 

D:> CL'lB' D n {a} = cp. Then introduce a C1-function V(·) : D X:R +JR, 

with 

inf V(x,t) I x E all o ' t E JR 
(3.3.3) 

inf V(x,t) I x E allB , t E :R 

CONDITIONS 3.3.3. The system (2.2.6) I is strongly controllable on lIo x :R 

for real-time attraction to liB' or strongly stabiZizahle for the level 

Ilxll = B, if there is a program P(·) and a C1-function V(·) , both 

defined on D x lR such that for all (x, t) E D x:R , 

(ii) for each U E P(x,t), there is T > 0 
B 

such that 

aV(x,t) T Vo - vB 
.::....:.~.!....:.'-- + V V(x,t) ·f (x,u,w,t) ~ - , V WE W 

at x TB 
(3.3.4) 

Stabilization is secured when (ii) holds for a given w. Stabilization and 

strong stabilization in stipulated time is secured when (ii) holds for a 

given TB • 

In order to verify the above Conditions, we need to show that: 

(1) lIo is strongly positively invariant; 

(2) CL'lB x:R is left by the motions of K(x o ,to) in real-time; . 

(3) liB is strongly positively invariant. 

We begin the first argument by assuming the contrary to (1), that is, that 

at least one motion of (2.2.6) I from lIo x lR crosses all o ' upon which 

there is tl > to such that by (i), V(~(xO,to,tl),tl) ~ Vo ~ V(xO,t o) , 

contradicting (ii). To show (2) we integrate (3.3.4) along an arbitrary 

motion from CL'lB x lR obtaining the time estimate 

~ TB 
V(XO ,t) - V(x,t) 

(3.3.5) 
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From (i) we have V(x,t) - vB <!: 0, V(xo ,to) - Vo ::; 0 or 

V(x o ,to) - V(x,t) ::; Vo - vB' yielding t - to ::; TB which means that for 

t > to + TB the motions from Ct,B x R must leave this set and by the 

proved feature (1) must enter t,B. The latter is shown to be positively 

invariant (feature (3» by the same argument as for (1), that is, by (i), 

(ii) contradicting .on D, which completes our verification. 

With the same notation and by the same argument as for Corollary 3.2.2 

we obtain the following: 

COROLLARY 3.3.1. Given (x o ,to) E ClIB x m., if there is a pair (u*,w*) 

E U x W suah that 

L(x,u*,w*,t) = min max L(x,u,w,t) 
ii w 

then (ii) of conditions J.J.J is met with u* E P*(x,t) 

(3.3.6) 

The above allows to determine the dissipative robust P*(·) as illus

trated in Examples 3.2.1, 3.2.2. 

In practical terms, by the level 1MB : Ilxll = B, we shall mean 

either the amplitude-level with Ilxll t, Ix I , or a V-level determined by 

some stationary function V(·) t, .... m. such that V(x,t) :: V(x) = Ilxll , 

with cMB : V(X) = B. .In the latter case, specifying as well 

at,o : V(X) = Vo we obtain (ii) of Conditions 3.3.3 trivially satisfied and 

we may show that the following is true, see Skowronski [4J, [9J, [12J, [20J 

and Skowronski-Ziemba [4J. 

COROLLARY 3.3.2. Given at,O,at,B determined in terms of V-levels, (ii) of 

Conditions J.J.J beaomes neaessary and suffiaient. 

Indeed, consider (3.3.4) in terms of 

v -v 
~~ -)T - _ _ _) 0 B 
vv (x ·f(x,u,w,t ::; - -:-T---'=-

B 

V(·) 

for all w E W on D and write it as L(x,u,w,t) ::; - OV/TB where 

(3.3.7) 

ov = v 0 - vB is the difference between the V-levels of at,o and at,B 

required for reaching at,B from all points between at,o and at,B When 

L is smaller than the rate I-ov/TB I, that is, L > - (OV/TB), the level 

at,B is not reachable. The sufficiency of (3.3.7) follows from implying 

(3.3.4) . 
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Turning now to the energy reference frame, we may have two objectives 

in stabilization for a given E-level: to keep the motions of (2.2.6) or 

(2.2.6) I either below it or above it. The latter may apply for instance 

in the case of stabilization about an unstable equilibrium (a saddle), the 

first is obviously more common. 

Let us refer first to stabilization below an E-level. According to 

(2.4.30) we use V(X) ::: E-(X) , whence (3.3.7) is 

fo(X,u,w,t) = VE-(x)T.f(x,u,w,t) ~ - Oh/TB ' (3.3.7) I 

for all w E W. It means that the complement 110 - I1B is covered by the 

field of entry points H- with Oh ~ h - h > 0 specifying the , CO CB 
outflux in E-(x) between aLo and al1B , see (2.4.22). This secures 

reaching E-(X) = B from all h O in 110 x h, see (2.4.19). 

We may now use the obtained conditions for controlling the behavior 

of our general mechanical system over 11. We shall derive several proper

ties which will specify the control pattern of such behavior. with con

trollability for ultimate boundedness we shall be able to assess the 

behavior in-the-large, see Section 2.3, then with stabilization below a 

level and about equilibrium, we shall specify local patterns in energy 

cups. Anything between these two regions will be the subject of the global 

study in section 3.4. 

First of all we observe that granted our power limiting axioms of 

Section 2.3, the motions of (2.2.6) I are uniform ultimately bounded in-the

large for an arbitrary control program P(·) , as much as the influence of 

such a controller may be ignored. See Fig. 3.9. 

Jl 

Fig. 3.9 
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Indeed, consider the cup in-the-large CZEL ' and directly let 

V(x,t) :: E-(X), for the use in Conditions 3.3.2 on CZEL • By virtue of 

(2.4.21) we have (i) of Conditions 3.3.1 and thus the first part of 

Conditions 3.3.2 satisfied. This is independent of any P(x,t). It 

remains to check upon (ii) , of Conditions 3.3.2, which reads now 

v W E W (3.3.8) 

or in terms of particular characteristics: 

F 'ii, q, ii: o~:~ I ~q I~ ,'~,':,i~' ii, T~ - DA 'ii,~, 0, Tq - DD 'ii,i;, '" TO ) (3.3.9) 

for all w E W, cf. (2.4.28). The axiom of bounded accumulation (2.4.15), 

augmented by (2.4.29), gives 

Ip(q,~,u,w)Tq + R(q,q,w,t)Tq _ 5A(q,~,w)Tql < N' < 00, (3.3.10) 

and (2.4.8), (2.4.9) secure the growth of DD(.) with the increase of the 

amplitudes ICiI, Iql on CL\ This means there exists some energy level 

Zc within the cup in-the-large ZEL such that we will be able to find 

positive c ( .) to satisfy (3.3.9) and thus cover /:, - /:,C with entry points 

of H-, for any U E U, that is, disregarding any program P(·). Conse

quently we have Zc : E-(x) = B such that the motions of (2.2.6)' are 

uniformly ultimately bounded in Zc, and the latter fact is independent of 

control. In the above, [;'C is a subset of D. with boundary aZc being a 

map of Zc into /:'. 

Granted the above we can now assume this Zc as D.o and control the 

system for stabilization under the level ZL' that is, secure strong con

trollability on /:,C x R for real-time attraction to D.L . This can be done 

satisfying Conditions 3.3.3 under the controller designed from (3.3.6). 

Observe that letting V(x,t) :: E-(X) again, we can now use Corollary 3.3.2 

to produce the required result. The necessary and sufficient condition for 

strong stabilization below ZL now becomes 

P(q,q,u,w) Tq + R(q,q,w,t) Tq _ DA(q,~,w) Tq _ DD (q,q,w) T~ 

~ - } (3.3.11) 

where hc,hL are the values of the energy flow at the levels ZC'ZL 

respectively and TB = TL is the time of reaching D.L , possibly stipulated. 

Observe that (3.3.9), which is already shown to be satisfied on CD.L , 

secures the negative value of the left hand side of (3.3.11), that is, the 

fact that CD.L is covered by entry points of H- We only have to qualify 

this "negativeness" or the "speed" of entry by the controller to secure 
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(3.3.11), that is, to make the out flux of energy between and 

resulting from satisfied (3.3.9) with the rate c( I'\xll), such as to pro-

duce h -h 
C L 

in time interval TL The controller of this type is 

obviously dissipative, cf. (2.4.20). For the positive damping, see (2.4.7), 

it is rational to expect _DD(q,~,w)T~ ~ 0 for all W E Wand tpus 

h -h 
C L 

for all iii E W, which secures (3.3.11). Following Corollary 3.3.1, the 

control condition becomes 

min m~ [F(q,~,u,w)T~J 
U w 

~ - (3.3.12) 

Observe that all the terms of (3.3.12) except one are dot products of n

vectors, so (3.3.12) is implied by simultaneous holding of the following 

inequalities related to components of the dot product: 

~ - - max ([R.(q,~,w,t) - D~(q,~,w)Jsgnq.}, (3.3.12)' 
W ~ ~ ~ 

i=l, ••• ,n 

Obviously hc in (3.3.12)' may be replaced by its upper estimate h~ 

which is well determined and thus convenient. Calculation of u. (t) from 
~ 

(3.3.13) requires specifying the functions F i (·) ,Ri (') ,Di ('), so we 

must rest the general case here, until passing over to case investigations. 

On the other hand, a few general comments are still in order. 

Observe that when the controlled motion approaches the hyper surface 

q 0, part of (3.3.12)' blows up to infinity, making the program demand 

control values above saturation level. In order to illustrate the case, 

let us assume what often happens, namely that F i ( .) is linear in u i and 

that every DOF has its own actuator (if not, we can treat the redundant 

components as nominal: u i ::: 0) "geared positively", that is, sgnF i = sgnui . 

Thus we have F. (q,~,u,w) = B. (q,~,w)u. , 
~ ~ ~ 

the maximizing value of w in (3.3.12)'. 

the program 

B. > 0 • 
~ 

Moreover, let w* be 

Then the latter is implied by 
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- D~(q,~,w*)Jsgn Cr.} 
J. ~ 

for 14.1 ~ S. 
J. J. ' 

min (u. sgnq.) 
- J. J. 
U - D~(q,~,w*)J sgn 4.} 

J. J. 

for 14. I < S. , 
J. ~ 

i 1, ... ,n (3.3.13) 

with B = (SI' ••• 'S ) = const calculated from n 

P. (q,B,w*,t) = U. , 
J. J. 

i=l, •.• ,n, 

A A Q where uI, ••. ,un = const are the saturation values. Alternatively ~i' 

i = l, ••• ,n may be obtained experimentally during the simulation procedure 

by taking them as minimal distances of points where the control action is 

Indeed, observe that below S. the con
J. 

secured from the surface q = O. 

troller makes the system either a damped or a conservative oscillator which 

as a rule crosses the axes qi = 0 instantaneously at all regular points, 

and does not blow the trajectories to infinity along the velocity surface. 

All that is missing over the (hopefully small) strip 14i l < Si' 

i = l, ••• ,n, is the active role of the controller towards its control 

objective. In fact, with the accumulation power (R. -D~)4. bounded, see 
J. J. J. 

Section 2.3, switching the controller off: u i (t) :: 0, over the small 

strip 14. I < S. , would do negligible harm. 
J. J. 

On the other hand, the level he in (3.3 .12)' can be replaced by the 

initial value hO = h(xO,to,t o) actually needed for reaching ZL from this 

initial energy level. In this case we make the rate of outflux related to 

position, and denote it 

c (xo) (3.3.14) 

This mayor may not be convenient, but is certainly more accurate and thus 

a more economic (power saving) design formula for the controller. The above 

(3.3.14) is a special case of the positive definite function c(llill) used 

before with the norm specified by E- (.). The case when the representation 

(3.3.14) is convenient is illustrated in Examples 3.2.1, 3.2.2, 3.3.1 where 

(3.3.14) cancels the velocity q in the denominator of (3.3.12), thus 

allowing us to avoid the procedure of introducing S!, •.. ,Sn 

The controller calculated from (3.3.12)' secures strong stabilization 

under the level ZL' that is, makes /::'L a strong real-time attractor with 

all motions of (2.2.6)' from /::, X:R being in /::'L after TL < 00, the latter 
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either to be found or stipulated. This means that all points of dL\ are 

entry points of H- and that L\ is strongly positively invariant. This 

also means that no asymptotic t -+ 00 approach to any set in CflL is 

possible and that flL must enclose all steady state positive limit sets, 

including but not narrowed to equilibria. 

Note that the controller based on (3.3.12) I is designed to work on 

Cb.L x R only. Wha t happens to the motions after they enter flL depends 

upon the shape of H with its extremal points = equilibria, the appearance 

of H-, HO , H+ in flL and upon distribution of the steady state sets men

tioned, see Skowronski [32J, [38J. It is the subject of what we have called 

global investigations and which, in the general case of JRN, is very difficult. 

We shall explain some aspects of it in Section 4.1. At present, using the 

stabilization tools available, we can discuss how to design another branch 

of the control program, now acting in flL XR with the following objective. 

We want to bring the motions below the energy level corresponding to a 

threshold Z~E which separates one or more cups Z~. Then, upon entering 

one of such cups, we want to make the motions strongly stabilized about the 

corresponding equilibrium. 

Since the equilibria are all located in the Configuration Space of 

displacements: q = 0, and the energy cups are symmetric about them, the 

surface H in ZL forms a 2n-l dimensional canyon with the bottom along 

q and parabolic walls ascending from it along q, see Fig. 3.10. Conse

quently, aiming at a specific cup Z~ we may either avoid or be forced to 

pass over other, higher located cups. The real scenario depends upon the 

location of the cups in the configuration space. As the origin may be moved 

Fig. 3.10 

2 
ZeE 
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with suitable transformation of variables, it would not narrow generality 

to concentrate on the basic cup about x(t) = 0 for the sake of being 

specific. 

Consider hO indicated in Fig. 3.5 as a starting energy value over a 

starting position XU = (qO ,~o) in I'!.L. By the same argument as for strong 

stabilization under ZL' with the use of Corollary 3.3.2 and the same 

dissipative control condition (3.3.14), we may arrive at the highest thres

hold level below hO, say Z~E. It results in securing the corresponding 

I'!.V as a real-time attractor. Here the dissipative controller has been 
CE 

used, not on CI'!.L XR, but on some subset of I'!.L X]R with the generated 

out flux of energy Oh = h O _ h V 
CE 

> 0 which has to be substituted into 

(3.3.14) . Note, however, that stabilizing the motions at the above level 

did not indicate where the motion actually landed. The controller used 

relates to energy levels only and is thus incapable of bringing the motion 

to a specific position on Z2 
CE 

If the motion covered the paths A or B 

in Fig. 3.10, the same controller may achieve the task of getting it into 

the basic cup and stablizing it about x(t) = 0 • The latter follows 

immediately from the fact that such a controller would satisfy Corollary 

3.2.3, producing entry points of H- all the way to the basic equilibrium. 

However, when the motion covers the paths C or D with the energy 

dissipative controller kept in action, it must enter cups Z~ or Z~ 

respectively, and get stuck there. How to avoid the case is not a stabiliz

ation problem, but rather a problem of controllability for collision or 

capture in a specific target set discussed in Chapters 5 and 6. One of the 

methods which we can mention at this stage is, in the case of following 

path D, to adjust the controller calculated from (3.3.14) so that upon 

reaching Z~E it preserves the energy along the motion instead of dissipa

ting it: h(ho ,to,t) = h O for all t concerned. This is obtained by 

substituting Oh = h O - h 2 0 which gives 
CE 

min max fo(x,u,w,t) 0 Vw € W 

U W 
(3.3.15) 

or 

min max [F(q,~,u,w)Tq] -max [R(q,~,w,t) Tq _ D(q,q,W) Tq] (3.3.16) 
U w w 

for the oonservative oontrol condition, making the motion to slide along 

the level Z~E until reaching a point above the basic cup ZE. Then some 

energy outflux with the dissipative controller h O _h2 > 0 is used again, 
CE 

producing the required entry to the basic cup and yielding, for h 0 - 0 > 0 , 

the required stabilization about x(t) = 0 • 
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The case of following the path C is identical, except we use (3.3.16) 

slightly lower, that is, at Z~E 

In the case of both paths C and D, it is easy to see that the motion 

could have entered the corresponding cups. If it did happen, we obviously 

need exit points for the field H+, thus the energy aacumulative aontroller, 

in order to get back to the threshold. The technique is identical to 

stabilization above some E-level, which is the second option of using 

Conditions 3.3.3 and Corollary 3.3.2, as indicated earlier in this section. 

now 
o h ,hB: 

Let us now briefly refer to stabilization above some E-level. We choose 

V(x) - hA -E+(X) cf. (2.4.31), with vO,vB specified by the constants 

Vo = hA _hO , vB = hA -hB , such that hB > h O (accumulation of 

With such a choice (i) of Conditions 3.3.3 is satisfied and (3.3.7) energy) • 

becomes 

(3.3.7)" 

the influx in E+(X) 

reaching E+(X) = B from 

below and staying above it for all t ~ to + TB • Now, the Corollary 3.3.1 

requires 

fO (x,ii,w,t) = VE+(x)T.f(x,ii,w,t) ~ Oh/TB 

for all w E W, with oh=h _ho > 0 specifying B 
between ClAo and ClAB , see (2.4.22) • This secures 

. "+(-)T - - - - ) max m~n vE x ·f(x,u,w,t 
ii w 

or by a similar argument to that for (3.3.14), 

max min [F. (q,q,ii,w) sgnq.J - - ~ ~ u w 

~ I.O~ _ min ([R.(q,q,w,t) -D.(q,~,w)Jsgnq.} 
n qi TB w ~ ~ ~ 

} (3.3.17) 

which allows us to calculate the accumulative controller for the influx oh. 

Similarly as with the dissipative controller, such a controller is useful 

in several regions of AL' easy to establish. One of them is about a saddle 
V or for crossing over a threshold: hB = hCE , as mentioned, see Gabrielyan 

[lJ. 

EXAMPLE 3.3.1. Let us return again to Example 1.1.1 and show first ultimate 

boundedness in-the-large and then stabilization below two energy levels ZL 

and ZCE surrounding the basic cup ZE. 

To enclose more equilibria than needed in our previous Example 3.2.1 

for the single cup investigated there, we shall consider the state equations 

(1.1.6) truncated at the third term: (g/R-) sinxl ;;: ax l -bx~ +cx~, which 
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gives three equilibria Dirichlet stable x~ = 0, (1/2c) l:! (-b ± /b2 _ 4ac) l:! 

and two unstable x~ =-(1/2c)l:!(-b±/b2-4ac)\ see Example 2.3.1. The 

latter two produce the single threshold specified by the energy 

with the first unstable equilibrium substituted. We then obtain the thres

hold as the line in /). 

12121416 
-"2 x 2 + "2 aX l - if bX l + "6 CX l = heE (3.3.18) 

called the conservative separatrix, see Fig. 3.11. Letting (g/~) = 1 , 

a = c = 1, b = -2.1, the equilibrium concerned is e xl = 0.85 which, 

substituted to (3.3.17), gives heE = 0.15 Since we deal with the single 

threshold, (3.3.18) represents ZL and the boundary Cll\. Both the ultimate 

boundedness of motions in-the-large and strong stabilization below heE are 

then obtained with the dissipative controller (3.2.14) for a given d, and 

(3.2.16), (3.2.19) for unknown d € [-l,lJ, the latter successively in the 

autonomous and non autonomous versions fo (1.1.6). 

= THRESHOLD 

Fig. 3.11 

In our simple example, a trajectory of (1.1.6) arriving at /).L must 

already enter one of the cups. The question which of them - without 

control - depends on the point of arrival embedded in one of the regions of 

attraction specified by the damped separatrices: trajectories (1.1.8) 
e passing through xl = 0.85 They will be termed in later chapters the 

regions of controllability for capture. It is however obvious as well, 

that with a conservative controller that secures the motion along the 

conservative separatrix, we may prevent entering a particular cup and force 

the system into another, see for instance the controlled trajectory ABC in 
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Fig. 3.6. Parts A and C are steered by a dissipative controller (3.2.14) 

while B is controlled by its conservative counterpart calculated from 

E(Xl'X z) = 0 as by (3.2.10) u = dlxzlx2, in the autonomous version. 0 

EXERCISES 3.3 

3.3.1 Stabilize the system 

Xl - Xl + 2x2 - u , 

Xz - X z - U , 

x3 -u, 

under the V-level: z + xZ + 2 Xl 2 X3 1. HINT: Choose the program 

u = x 2 • 

3.3.2 For the system q - Iqlq + q + q3 = u, q E yt, find a dissipative 

controller satisfying Corollary 3.3.1 which stabilizes below the 

E-level specified by h = 1 Calculate the time TB as a function 

of -0 (o.o)T 
X = q,q • If the control values ought to be constrained, 

what is the saturation value u needed for the objective concerned? 

3.3.3 Consider the system (1.1.13) of Example 1.1.2, Fig. 1.6, find the 

equilibria, energy threshold values and calculate how much influx 

is needed in order to reach the threshold about the basic cup from 

particular initial states (qO,~o) with this cup. Find ZL' ~L 

and determine the out flux needed to reach the highest Dirichlet 

stable equilibrium (highest local minimum of E ( .) ) • 

3.3.4 Stabilize the system q + wq + aq - bq3 = u, q E JR, lui < u, 
W E [-l,lJ; a,b,u = const > 0, about the Dirichlet unstable 

equilibrium qe = !a/b, qe = 0 above a designed secure E-level. 

3.3.5 Write the system q + q2q - q + wq3 = u, q ERin the phase space 

form and t~en find a controller stabilizing the trajectories below 

some E-level surrounding one of the stable equilibria. In the 

above I u I ~ u, W E [1,2 J • 

3.3.6 Consider the system q + wq u, XEJR, with the program 

u = { 

k, for q < 0 

-k, for q > 0 , 
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and w E [1,2J. By completing the square show that the trajectories 

form elipses centered at qe = ±k/w, qe 0 for q ~ 0, respect

ively. Then verify stabilization at the basic energy level reached 

in finite time. Calculate the total energy out flux and the time. 

3.3.7 Let the origin of JR2 be the source ofa potential with intensity 
2 2 proportional to the square distance V(ql,q2) = k/(ql +q2) , and 

consider a point mass with a given initial kinetic energy 

T = ~.[(q~)2+ (q~)2J Ignoring other forces, find a controller 

under which the mass is charged with the full potential Vmax 

(that is, the point collides with the source) subject to the 

repelling force w: -1 ,,; w ,,; 1 • 

HINT: 

3.4 HOW TO FIND A LIAPUNOV FUNCTION 

We have already used two test functions V ( .) , both in terms of the 

total energy, and have seen that the design of controllers as well as the 

size of controllability regions depends upon the choice of V ( .) , which is 

by no means unique. Even if we are able to specify controllability for 

some objective by necessary and sufficient conditions, such conditions are 

still subject to the choice of V ( .). It is thus always an open question 

whether a better function may not be found: generating some more accurate 

controller, a larger region of controllability, etc. 

The search for Liapunov functions began before the turn of the century, 

by Liapunov, himself showing that the energy in terms of the square form 

V = xTpx is the function for linearized problems. In spite of such long 

development of the Liapunov formalism, there is no general rule for finding 

a suitable Liapunov function on all occasions, but there are a number of 

fairly general methods available. A very good account of the early search 

for Liapunov functions is given by Antosiewicz [lJ, Barbashin [lJ, [2J, 

Szego [lJ and Grayson [1]. The history of the region estimates, and new 

results in the formalism as such, are reviewed up-to-date in Genesio

Tartaglia-Vicino [lJ, with special cases discussed in Chin [1], and more 

recently in Chiang-Hirsch-Wu [1]. We shall refer to the region estimates 

again in Section 5.4, with some references listed there. 
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From the variety of methods available, three seem to be most popular. 

The first two, referring to total energy, appear particularly useful for 

mechanical systems and will be briefly described below - they are the first 

integral method and the variable gradient method. The third, the so called 

Zubov's method, requires solving of a nonlinear partial differential 

equation, see Szego [lJ, and thus developed along the practical line of 

numerical design of the Liapunov function, see Margolis-Vogt [lJ, Davison

Kurak [lJ. The latter proves useful in determining the regions of 

stability and controllability discussed in this text in Section 5.4. 

METHOD OF FIRST INTEGRAL 

The first suggestion and early development of the method belong to 

A.M. Liapunov himself. Later references may be found in the quoted reviews. 

It seems that our choice of Liapunov function is at its best if we 

can find a function which is somehow inherent in the physical specification 

of the system, possibly characterizing its dynamic behavior - like our 

energy frame of reference. It usually is a storage (potential) function 

with levels preserving ene,rgy, entropy, any type of cost connected with a 

motion, etc., and with a flow of storage specifying the motion. 

A natural way of finding such a storage function is to select from the 

state equations their part which is exactly integrable. Then the first 

integral of such a subsystem, storage conservative, will give a family of 

levels of the potential function concerned. There are two versions of 

such a first-integral method. The first is used when the integrable sub

system may be immediately selected in an obvious way, and the second when 

this is not the case, and some rearranging of the state equations is needed 

for attaining the above integrability. 

In the first version it is assumed that we may separate a Lipschitz 

continuous function ~(x,t) from the selector (2.2.5) ': 

f(x,u,w,t) = ~(x,t) + ¢(x,u,w,t) (3.4.1) 

such that the corresponding reference system 

x = ~(x,t) (3.4.2) 

is exactly integrable, that is, that there is a smooth scalar function 

V(·) : ~ x R + R which is a first integral of (3.4.2), meaning V(x,t) 

const or 

dV(x,t) 11- t V(x,t) 'd(x,t) x, 
o (3.4.3) 
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along the solutions of (3.4.2) in ~ x:R, that is, 

aV(x,t) + V_ V(x,t) .~(x,t) = 0 
at x 

(3.4.4) 

The checking or designing conditions for the procedure are the Cauchy-Euler 

necessary and sufficient conditions for exactness: 

i,j 1, .•. ,N+l (3.4.5) 

- Do (_ Do 
where g(x,t) = (gl, ••• ,gN+l) = Vx,t V x,t) ,xN+l = t Then we find the 

Liapunov function from (3.4.3) by the usual procedure of calculating the 

line integral along solutions of an exact equation 

o fx,t -V(x,t) = V(x ,to) + g(t,;,T) ·d(t,;,T) 
o 

x ,to 
(3.4.6) 

with the direct selection of state variables, see Section 2.1, our 

choice of ~(.) means ~ = (~, _IT(q»T which makes (3.4.2) the energy 

conservative reference frame introduced in Section 2.3, with the energy 

flow (2.4.19) discussed in Section 2.4 and corresponding to (3.4.6). For 

the relative state variables or for investigating a relative behavior of 

systems, we may have to use different ~(.), together with different 

Liapunov functions, as will be seen in later chapters. 

Examples 3.1.2, 3.2.1, 3.2.2 and 3.3.1 illustrate the version described 

above of the first integral method. Let us add one more typical case. 

EXAMPLE 3.4.1. Consider the scalar Duffing's equation 

q + d(q,q) + kq - Sq3 = U , (3.4.7) 

or equivalently 

(3.4.8) 

with our standard assumptions on damping d(q,q) and potential character

istic y = kq - Sq3. We obtain the reference system by cutting off the 

damping and input terms which leaves the conservative ljJ(x,t) == kxl - Sx~ 

Then (3.4.2) becomes 

(3.4.9) 

which integrates exactly by separable variables: 
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or 

const (3.4.10) 

representing the E-levels in Ox 1 x 2 and yielding E (x 1 ' xL) = 0 along the 

trajectories of (3.4.9) as required, see Example 3.2.1. Observe that the 

system has three equilibria x 2 = 0, Xl = 0, ± Ik/S with only (0,0) being 

Dirichlet stable and the corresponding energy cups reaching up to thresholds 

h = kL/2S 

Taking V(x,t) = E(x) , the energy of the system, we may study the 

trajectories locally, that is, below h = k2/2S, but also beyond the cup, 

that is, about the thresholds themselves - with the use of the accumulative 

control program as indicated in Section 3.3. On the other hand, note that 

choosing the standard function without our method, that is, 

without reference to energy or some other physically meaningful function, 

we shall obtain the correct results only up to the energy threshold 

(3.4.11) 

that is, locally. Anywhere outside (3.4.11), another test function must be 

found and some conditions securing the continuity of investigated trajec

tories must be determined and satisfied on the overlap between the operating 

regions of the two functions. In the above sense, our choice of energy is 

global (non-local) and avoids a number of technical difficulties in using 

the Liapunov formalism. o 

The second version of the method of first integral applies when the 

separation (3.4.1) is not possible. Following Kinnen-Chen[l], Chin[l], we 

then rearrange (2.2.5) I in such a way as to obtain a separable part of it 

which integrates exactly. To do so, let us "autonomize" (2.2.5) I in lRN+l 

as 

dx. 
~ f. (x,u,w,t) 

1 
dT ~ 

(3.4.12) 
dt 1 
dT 

and introduce the (N+l)-vector function g(x,u,w,t) with components 

gi(x,u,w,t) = f1 (x,u,w,t) + ••• + f i _l (x,u,w,t) 

- f i +l (x,u,w,t) - ••• - fN(x,u,w,t) -1.) (3.4.13) 

Then the equation (2.2.5) I gives 
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whence also 

or in the (N+l)-vector format 

g(x,u,w,t)·d(x,t) = 0 • (3.4.14) 

For example, for the 2D system xl = f l (x"x2) , x 2 = f 2 (x l ,x2) we have 

gl =-f2 , g2 = f, whichyields glxI+g2x2=glfl+g2f:l=-f2fl+f,f2=0 

The equation (3.4.14) is equivalent to (2.2.5)' producing the same 

motions. Obviously, in general, (3.4.14) is not integrable. To remedy it, 

we design some (N+l)-vector function R:(x,u,w,t) which, subtracted from 

g(x,u,w,t) of (3.4.14) with given ii,w, makes the resul;:ing equation 

[g(x,u,w,t) - R:(x,u,w,t) ]T·d(x,t) = 0 (3.4.15) 

exactly integrable. Because of this, there is a V(x,t) for which, 

d t ' ~ t h eno 3.ng xN+1 - , we ave 

g, (x,u,w,t) - 5/" (x,ii,w,t) 
3. 3. i 1, •.• ,N+l 

and 

a(g, - 5/,,) 
J J i,j 1, ••• ,N+l. 

This means that [g - R:J 

g(x,u,w,t)T.d(x,t) 

v- V(x,t) Then by (3.4.15), 
x,t 

R:(x,ii,w,t)T.d(x,t) 

On the other hand, along motions of (2.2.5)' or (3.4.14): 

.(- ____ Td(x,t) _( ___ T[---- ] 
V x,t) = g(x,u,w,t) ~ = g x,u,w,t) f(x,u,w,t),l 

substituting (3.4.18), we obtain 

V(x,t) = R:(x,ii,w,t)T[f(x,ii,w,t),l] 

If I is designed with 5/, = 1· I = (I' 1) T we have 
N+l· " 

V(x,t) aV(x,t) - - - - T - - - -
at + 5/,' (x,u,w,t) ·f (x,u,w,t) 

Integrating (3.4.19) along motions of (2.2.5) " we obtain 

V(x,t) It 
ds + 5/,: (~, ii, w, t) dE;; , • 

3. 3. 
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Technically we start with designing I which satisfies conditions 

(3.4.17), and then we check whether V < 0 and V > O. The procedure is 

illustrated in the following example. 

EXAMPLE 3.4.2. Consider the system 

xl ux 3 + wx~ fl } 1 

3 3 
f2 x 2 - xl - x 2 + UX l - wx 2 

with u,w E [-l,lJ • From (3.4.13) , gl = -f2 , g2 = fl' First we 

search for JLi (xl'x2,u,w), i = 1,2 such that (3.4.17) holds. One of the 

possible ways is to require both partial derivatives vanishing 

1 + 3wx~ + 
3JL l 

0 
3x 2 

, 

3ux2 
3JL2 

0 + -- = 
1 3x2 

wherefrom JL l = -xz - wx;, JL 2 = -ux~ Next, if we choose the minimizing 

u = -1 and assume the maximizing uncertainty w:: 1, see Corollary 3.2.3, 

we obtain (3.4.19) in the form 

as required. Then we calculate 

again as required. o 

VARIABLE GRADIENT METHOD 

The early development of the method belongs to schultz-Gibson [lJ. 

Later stages are reviewed as quoted at the opening of this section. 

Suppose that we want the order of our previous procedure reversed: 

start with assuming a suitable time derivative (3.4.19) and check upon 

(3.4.17) and the sign of V(·) obtained by integration (3.4.21). In more 

general terms, the method is expressed as follows. 

Consider (3.4.14) and assume the gradient g(x,u,w,t) to be unknown 

but of the format 
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g1' = a, ,t + t 1 a .. x, , 
11 J= 1J J 

i 1, ... ,N 

Then we choose a", a, , 
11 1J 

such that g is a gradient of a scalar function, 

that is, that (3.4.17) holds, while ii, ware chosen based upon Corollary 

3.2.3. The procedure is purely technical and thus best explained in a 

simple but typical example. Some different aspects of the method are 

described in Prusty [lJ and Byrne-Wall [IJ. 

EXAMPLE 3.4.2. Consider the system 

Xl - 3ux2 
5 

- Xl 

X2 - 2xz + wx S 
1 

with u € [1,2J, w € [O,lJ We set up 

a + a 12 x 2 aX l 
= all xl , 

With minimizing u 

Corollary 3.2.3: 

1 and maximizing w 1 , we demand (3.2.7) of 

v 

Since a" are of our choice, we let 
1J 
• (1 6 2) gives V(x 1 ,x2) = -a22 TXl + 2X2 satisfying the requirement provided 

a 22 > O. With this assumption on a 22 we also have 

Then checking (3.4.17), 

provided a 22 const. Finally we calculate 

Xl x 2 ' 

f + a22~~d~2 + f aZ2~2d~2 
o 0 

which is positive definite for a 22 > O. Observe that if a L2 < 0 then 

V(x l ,X2) < 0 but also V> -c(llill) which satisfies Conditions 3.2.3 with 

As regards control, the latter gives accumulative control. 

o 
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EXERCISES 3.4 

3.4.1 Using the first integral method, find a test function V ( • ) and 

secure the stability or asymptotic stability of the origin for the 

following systems. Find the regions. 

(i) xl X2 + 3x2 , 

XL - 3x L - 4x S - 4x3 - Xl + u 
1 1 

(ii) q + q sin2 q + 4q3 = U 

(iii) xl X2 , 
X2 -UX 

2 

2 3x l 4x l -

(iv) Xl X2 , 
X2 _ux2 3x 3 5 - + 4x l - WX l 2 ! 

3.4.2 Consider the system q + 81 q I q + 4q = 3, q E ]R, and establish a 

test function V(·) for stabilizing the trajectories about the 

equilibrium qe = 3/4, qe = 0 • 

3.4.3 Using the Variable Gradient Method, find stabilizing test functions 

for the following systems. 

(i) xl 
2 -X I X2 

5 - Xl 

X2 x3 
1 

x3 
2 

(ii) Xl X2 , 
X2 - x 2f(x l ) -xlf(xl ) 

df 
- x 2 - X!X 2 d ; 

Xl 

with f(·) being a positive Cl function for all Xl 

2 • 2 
XI X2 + Xl Sl.n X2 ' 

-x 2 (xi+ l ) ; 

(v) Xl XI X2 , 
X2 _ 2x2 - X2 ; 1 

(vi) Xl Xl (x2 -1) , 

Xl - 2 (x~ + b 2) !I, <:: 0 

Xl 
2 Xl (X L -X2) , (vii) 

XL 
_ x2 2 - 2X 3XL , 

1 

X3 
2 -X2X3 

2 + X2X3 ; 

(viii) Xl X2 , 
X2 - 3xl 2x l 

3 - + 4x! 
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Chapter 4 

GLOBAL PATTERN OF STEADY STATES 

4.1 AUTONOMOUS LIMIT SETS 

What happens to the motions of (2.2.6) or (2.2.6) I after they have 

entered ~L or when they have started from there? How is the conservative 

reference frame, in particular the energy cups and thresholds, distributed 

in ~L for a specified system? Assuming that we aim at stabilizing the 

system about steady state sets, given a controller, how are the particular 

attractors and real-time attractors distributed in ~L ' both inside and 

outside the energy cups? Can we find controllers forcing motions from one 

cup or region of attraction to another? 

These, and others similar, are the questions we would like to answer 

in our global study of ~L. However, as it already may have been guessed 

from Section 3.3, the answers are rarely possible in the general case. 

Nevertheless, there are some generally valid properties of the global state 

or phase space pattern which can facilitate the case stUdies. We shall 

attempt in this section to sum them up and illustrate their use in examples. 

The first question to ask is about the location and size of the energy 

cups. It has been largely answered in Section 2.3 for the free, conserva

tive system considered our reference, and in Section 3.2 for the controlled 

system, possibly also nonautonomous. On this background we shall now look 

at the properties and location of the steady state sets. 

The reader may recall here our discussion on steady state trajectories 

and sets in Section 2.1 and on invariant sets in Section 3.2, as well as the 

fact that the steady state trajectories and sets are minimal invariant. We 

shall elaborate the point slightly further now, referring first to the 
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autonomous system (2.2.6) with the selector equation (2.2.5) and steady 

state trajectories. 

The set of points y € ~ such that we can find a sequence of time 

instants {t} C:R generating ~(xo ,t ) -+ y as t -+ 00 (t -+ _00) is called 
n + n 

the positive (negative) limit set A- for trajectories of (2.2.5): 

A± = {y€t. 1:1 {t }, t -+±oo ~ CP(iO,t ) -+y} , 
:::J n n n (4.1.1) 

see Fig. 4.1. The point y of above is called a limit point of the trajec
+ 

tory. It may be shown that A- is closed, invariant (Nemitzky-Stepanov 

[lJ) and represents a boundary of a trajectory (Bhatia-Szego [lJ): 

-=--=o-r- - -0 ± ± -0 cp (x ,JR) = cp (x ,JR) u A (x ) • (4.1.2) 

Fig. 4.1 

Then if we can find a trajectory which is its own limit set: 
-::---:---;:

~(io,:R±) = A±(xo), it also must be its own closure A±(io) = CP(xO,~) 
It is heuristically obvious that such an invariant set is minimal. More 

formally, it follows from (4.1.2) that, in particular, if a set is a closure 

of a trajectory: ~(M,JR±) = M or CP(M,JR) = M, then it is minimal invariant 

under (2.2.5), and conversely any set that is minimal invariant under 

(2.2.5) represents the closure of a trajectory, see Skowronski [32J. This 

is then also equivalent to 

(4.1.3) 

which may serve as a definition of minimal invariant sets. The best example 

here is a periodic orbit which consists of its own limit points only and 

for which one can prove that 

(4.1.4) 

The orbit is a closed set and forms its own limit sets, it ~s thus minimal 

invariant. In fact (4.1.4) defines the period~c orbit as there are no other 

trajectories with this property. In a plane, a periodic limit orbit becomes 

a limit cycle. Obviously the orbits may enclose one another within or 

outside an energy cup. A very simple example illustrates the case. 
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EXAMPLE 4.1.1. Consider kinematics of a point-mass given in polar coordin-

ates by the equation 

r r (u - r) (w - r) 2 } (4.1.5) 
e - 1 

with the state variables x = r, t = e. Given the test function 

V(x,t) :: r, w = 5, and the control program defined by u(t) :: 2, we see 

that for 0 < r < 2, we have r > 0 which makes the negative limit cycle 

11.- : ret) :: 0 unstable, and the positive limit cycle 11.+: ret) :: 2 asymp

totically stable, as on the other side, that is, for 2 < r < 5, we have 

r < O. By the latter, we also have the negative limit cycle 11.-: ret) :: 5 

for trajectories from r < 5, see Fig. 4.2. 

Fig. 4.2 

Observe that changing the controller u = per) we may change the 

pattern ·significantly. For u = r we have the rO-family of cycles 

ret) = rO = const. Taking u(t) = const and increasing it along (0,5J 

we move 11.+ towards the 11.- surrounding it, and finally for u(t) :: 5 and 

still w = 5, we reduce the two cycles to a single asymptotically stable 

11.+ : ret) :: 5. In turn, making w € [2,5J, we may collapse the outside 11.

to 11.+ sooner than at r = 5, but on the other hand w > 5 can make 11.+ 

chase the A-concerned until the controller saturates, thus making the 

unification of the two cycles impossible. o 

Obviously an equilibrium is trivially a periodic orbit, with a single 

limit point comprising closure of a trajectory and being its own limit set, 

see (2.1.7). We illustrate the case again with a simple example. 
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EXAMPLE 4.1.2. Consider the system 

xl sin xl ) (4.1.6) 
x2 u(l-x~) 

with the controller u = x 2 and equilibria (0,0), (n,l),(n,-l),(-n,l), 

(-n,-l) which are limit points. Indeed, no trajectory from the open 

rectangle (-7T,n) x (-1,1) can reach the lines xl = ±n, x 2 ±l in finite 

time (no point of the boundary leaves or enters the boundary), so the rect

angle and its boundary are invariant. Consequently the closure is also 
+ 

invariant. It is easily seen that l\- are located as shown in Fig. 4.3. 

o 

Fig. 4.3 

It now remains to see whether and where in t:.L we can find the minimal 

invariant sets. Our hypothetical answer is: they are in any subset of t:.L 

in which the trajectories of (2.2.5) from t:.L are uniformly ultimately 

bounded for bound (MB . Indeed the latter implies that t:.B is positively 

invariant. Then, since the system is autonomous, it is also invariant. 

One can then also show (Bhatia-Szego [1 J) that the closure liB is invariant. 

Nemitzky-Stepanov [lJ proved that every nonempty invariant set which is 

bounded and closed contains a minimal invariant set which is also closed 

and bounded. This confirms our hypothetical answer. Moreover, by Birkhoff 

[4J, every trajectory of a bounded and closed, minimal invariant set is at 

least recurrent which means, in our case, a steady state trajectory. Con

sequently the uniform ultimately bounded t:.B localizes the steady state 

trajectories which by (4.1.3) are limit sets. The real-time attractor is 

a stipUlated t:.B of the above, and we must specify such sets a-priori if we 

want to draw a state space pattern over specific" regions in t:.. Conse

quently, the real-time attractors either identified for given controllers 

or formed by a suitably chosen control action, localize the steady state 
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limit trujeatories. They may be found or posed in local cups as equilibria 

or any other kind, the latter also outside the cups: enclosing several 

cups, as long as they stay in D.L • 

When the limit trajectories are expected inside an energy cup, the 

real-time attractor obtained by strong stabilization below the E-level of 

hB may suffice. Elsewhere, enclosing several equilibria or still in a cup, 

but well above the equilibrium, we need a combination of two E-levels: 

stabilization below some ~ and above some h~ after the time interval 

TB = max(T~,T;), see Fig. 4.4. Then we may need the La Salle's theorem on 

limit sets to determine the steady state, see La Salle - Lefschetz [1]. 

Before stating the theorem, we need some new concepts. 

A positively (negatively) invariant set or invariant set is termed 

maximal if and only if it is closed and not a proper subset of a set of the 

same type. The same applies to strongly invariant sets. 

h 

Fig. 4.4 

A' _ A" We assume UB u B 

that D n (~- D.;) of <P • 

bounded and introduce an open connected set D such 

By the same argument as in La Salle - Lefschetz [1 ] 

we obtain the following proposition. 

PROPOSITION 4.1.1. Let v(·) : D 4R be a c1-funation suah that the 

boundaries oD.' o~" 
B' -S 

on D are speaified by v-levels, and let M be the 

maximal invariant set in the set of all points 

Vex) = o. If there is a aontrol program P(x) 

U E P(x), either 

or 
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for all x oF 0, W E W, then the system (2.2.6) is strongly asymptotically 

stabilizable about M. 

The above proposition has an immediate corollary which follows by the 

same argument as that for Corollary 3.2.2 but used twice, first with sub

stituted E-(x) and second with substituted -E+(X). 

COROLLARY 4.1.1. Given xO E D, if there are u* E U w* c W suah that 

either vex) > 0 with 

or vex) < 0 with (4.1.8) 

VV(x)T·f(x,u*,w*) = m~x m~n [VV(X)T.f(X,U,W)] ~ 0 

then condition (4.1.7) is met with u* E P*(x) 

Clearly proposition 4.1.1 and Corollary 4.1.1 are sufficient conditions. 

We use vex) - E- (x) for descending from at:.~ and Vex) == -E+ (x) for 

ascending from at:.~. Then, proposing the same controllers on Ap, - ~ 
as those used for reaching the real time attractors t:.~,t:.~, we see that 

they satisfy (4.1.8) and thus (4.1.7). Indeed, the dissipative controller 

(3.3.7) I acting from above across finite I oh I < 00 for T-+-OO generates 
B 

min max fo (x,u,w) ~ 0 (4.1.9) 
u w 

while the accumulative controller (3.3.7)" acting from below for the same 

reason produces 

max min fo(x,u,w) ~ 0 , 
u w 

(4.1.10) 

proving our point. By the same argument as for Corollary 3.3.2, with a 

choice of V(·) and P(·), condition (4.1.7) becomes also necessary, and 

thus so are (4.1.9) and (4.1.10), cf. (3.1.21), Corollary 3.1.2. 

Continuing further, (4.1.9) and (4.1.10) imply that on the conservative 

field HO between H- and H+ we must have 

min max fo(x,u,w) = max min fo(x,u,w) 
u w ii w 

o • (4.1.11) 

The above necessary condition determines a reasonable candidate for the set 

M of the Proposition 4.1.1. We confirm the candidate by showing it to be 

maximal invariant between h~ and h~. Let us start with the invariance. 
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Indeed, (4.1.9) with E-(X) 

M, from entering the field 

prevents such trajectories 

2.9. Then it is also seen 

> 0 

H-

from 

that 

prevents trajectories, starting at such 

above it and (4.1.10) with -E+(X) < ° 
entering H- below it, see Figs. 4.4 and 

such M is maximal invariant, since trajec

tories from outside M start either from H- or H+ which excludes the 

preventive properties of the above. 

Note here that such M defined by (4.1.11) may not necessarily be 

filled up by a single steady state trajectory. In the general case of RN 

it will be an N-l dimensional manifold. 

Technically, in order to identify M with approximation to minimal 

I oh I we search for lowest h~ and highest h~, which means min E- (x) and 

max E + (x) , subject to constraints E (x) = 0. This is illustrated below. 

EXAMPLE 4.1.3. Consider the Lienard-type system 

} (4.1.12) 

with the single equilibrium (0,0) which is Dirichlet unstable (saddle) 

generated by the energy 

z Z x4 
Xz Xl 1 

E(xl,x Z ) = ""2 + ""2 + ""4 (4.1.13) 

so that the local cup extends over "'. The energy is not related to w, 

thus we let V(x,t) - E (xl ,xz ) , whence 

(4.1.14) 

Suppose now that w is known, say w(t) :: 4 . Since the problem is two 

dimensional, the geometric locus HO : E(xl,xZ) = ° for conservative 

trajectories is a xC-family of lines and since we are in the energy cup 

these lines are closed, for each xO generating a periodic orbit. Hence 

specifying the controller by 

(4.1.15) 

or u = x Z ' we obtain at suitable xO a single, isolated asymptotically 

stable limit cycle 11+ : x Z 
1 + x Z 

z 5. Indeed the latter fills up M, 
E > ° making the equilibrium an unstable 

points of H+, while for xi + x~ > 5 

there is E < ° making it covered by entry points of H-, see Fig. 4.5. 

since for z z < 5 there is Xl + Xz 

II - and the region covered by exit 
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Fig. 4.5 

with w unknown, say w E [2,6J , we have 

min (ux) + max [ 2 2 2 J -(Xl +x2 -w)x 2 ~ 0 
U w 

or 

min (u sgn x 2) ~ min (x~ +x~ -w) IX21 
ii W 

or 

min (u sgnx 2) ~ (x~+x~-6)lx21 (4.1.16) 
ii 

as the dissipative control condition above the cycle A+, and by a similar 

argument, 

max (u sgnx 2) ~ (x~ +x~ - 2) IX21 
u 

(4.1.17) 

Observe that the controller u = x 2 satisfies the above inequalities in 

their sets of holding, that is, for and x~ + x~ < 3 

respectively, with (4.1.15) between (4.1.16) and (4.1.17), implying (4.1.11). 

Since E - (x) == E + (x) == E (x), in order to find the estimates h~, h~ we 

take successively min E(x) subject to x~ + x; = 7 and max E(x) subject 

to x~ + x~ = 3. Substituting (4.1.13), the Lagrange multipliers method 

gives h' 
B 

15/4, h~ = 7/2 . 
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Note that the method of defining the unique cycle 

would not have been possible in JRN even for specified 

A+ : x~ + x~ = 5 

w, while the estima-

tion method by the two levels 

:R N, N > 2, cases. 

h' h" works for unknown w in both JR2 and -13' B 

D 

Obviously the function V(·) of Proposition 4.1.1 does not have to be 

energy, as the following brief example shows. Consider 

222 Xl + 4x 3 - Xl (Xl + 8X2 + 8X 3) 

X2 - X3 - X2 (4x~ + 8x~) 

and find two ellipsoids centered at the origin such that the inner ellipsoid 

contains only exits and the other only entries. 

wherefrom 

[ 3 2 2] +4x 3 -Xl +X2 +X3 +2x 3 (X I +4x2 -2x3) 

We set up 

Introducing V(·) as distance p2 with sin2S = 4x;/p2, cos 26 = (x~ + 4x~) /p2 

we have V= p2 (1 + t sin226) - p" and thus V > 0 for p = 1/2, V < 0 

for p = 3/2, generating the two ellipsoids. 

find p,6 when V = p2 (1 + -} sin226) - p" = 0 

For a better estimate, we 

or sin226 = 2p2 - 2 which 

defines the limit surface. Note that sin22S varies from 0 to 1 

which gives 1 ~ P ~ 13/2 = 1.225 • 

In all the above we did not say much about the character of the steady 

state limit trajectory, except that by Birkhoff's result it is recurrent, 

and by Hilmy,' it fills up an N-l dimensional manifold. Unfortunately, 

little more can be said in the general case. 

A trajectory is called positively (negatively, both) internally stable, 

that is, stable with respect to the set of its owri points, if and only if 

for each ~ > 0 there is 0 > 0 such that any xl on this trajectory 

satisfying P(xO,x l ) < 0 implies p(~(xO,t),~(xl,t» < ~ for all 

t € R+ (JR - , JR). Markov [1] proved that if a trajectory is recurrent and 

positively internally stable, it is almost periodic. This result was later 

confirmed by Nemitzky [1], [2] under the stronger condition for internal 

stability. 

The existence of a periodic trajectory is in general an open problem. 

It is traditionally discussed in terms of the so called fixed-point theorems 

(fixed point under the map of the state space into itself), and has a rich 
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literature, see Nimitzky-Stepanov [lJ, Cesari [lJ, Sansone-Conti [lJ, 

Yoshizawa [lJ. 

The existence of a periodic limit trajectory appears to be slightly 

easier to show. The problem is solved for N < 4, cf. Nemi tzky [2 J, 

Shirokorad [lJ, Cartwright [lJ, Minc [lJ, Tribieleva [lJ, etc. The account 

is certainly not exhaustive. Then, in the N-dimensional case, the existing 

attempts go along several avenues: the method of integral manifolds (thori), 

see Blinchevski [lJ, the method of point-transformations, see Neimark [lJ, 

and oscillatory regimes, see Nemitzky [3J, Skowronski [3J,[7J, Skowronski

Shannon [lJ, global convergence, Skowronski [4J -[7J. An entirely different 

approach via frequency domain was used in Noldus [l J. The work on limit 

orbits is well reviewed in Nemitzky [4J,[5J and Pliss [lJ. For the current 

review, see Skowronski [45J. 

In terms of control design we may, however, have some solution to the 

problem of a periodic limit trajectory. Using necessary conditions, such 

as (4.1.11) or similar, applied to a closed trajectory in ~L' we may con

sider such a trajectory a candidate for the limit orbit, and then confirm 

the candidate by Proposition 4.1.1. Alternatively to (4.1.11), one can use 

a condition built upon the estimate of an energy flux, see Section 2.4, 

along the proposed closed curve, see also Kauderer [IJ. 

PROPERTY 4.1.1. If there is a closed trajectory ~ (xo,lR) in ~L and the 

time needed for a single tracing along it equals T < 00 

(u*,w*) E U x W such that 

then there are 

o. (4.1.18) 

It means that for the extremizing value w* taken as in (4.1.11) we 

may design a program P(.) such that the trajectory concerned is either 

conservative or interchangeably controlled by balanced dissipative or 

accumulative controllers to attain (4.1.18), see also our derivation of 

(4.1.11). The first case may be easier to design. 

We shall do it by generalizing Example 4.1.3. Consider (2.1.4) and 

choose the program from the control condition 

(4.1.19) 

satisfying (4.1.18) and thus making the system integrable, with the energy 

integral E(x) = hO, and the trajectory embedded in E-level. The program 
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is thus conservative. By the same argument as for deriving (4.1.11), below 

and above the E-level concerned, we shall have the balance (4.1.19) can

celled and the program becomes accumulative and dissipative, respectively. 

This, by Proposition 4.1.1 and Corollary 4.1.1, makes the trajectory a limit 

steady state trajectory, periodic since closed. Let us illustrate the case 

with a single DOF example. 

The trajectory kq2 + q2 = 2ho is the energy integral of the conser

vative linear system q + kq = 0, k > 0, and at the same time it is an 

ellipse, thus closed. The condition (4.1.18) holds along such an ellipse 

in an obvious way. Consider now the system 

q + d(q,q) + kq = u 

and choose u = d(q,q) for all q,q satisfying kq2 + q2 = 2ho • By the 

format of the latter, this balance is distorted for any point below and 

above the hO-level generating E > 0 E < 0, respectively. 

The question which reamins open is how many limit trajectories are 

enclosed below some E-level hB , in a neighborhood of an equilibrium, or 

between two such levels, h~ and h~, orelsewhere? Obviously, if the 

6~ - 6~ concerned is covered by a region of attraction to a single limit 

set, the problem is solved. In general, however, assuming a suitable 

controller, ~e need to investigate 6' - 6" further to discover a steady B B 
state behavior of the trajectories and to assume them attractors from sub-

A I A II 
sets of DB - DB' There are general methods for such an investigation on 

differentiable manifolds, see Meyer [lJ, Conley-Easton [lJ, Wilson Jr [lJ, 

Wilson Jr-Yorke [lJ, but they are not directly applicable to our type of 

study. Consequently our study must often be numerical only, in the absence 

of other methods. It is substantially facilitated by knowing some general 

properties of distribution of attractors and real-time attractors, their 

mutual relationship and the relations between the region in-the-large and 

the local regions. We shall comment on this below. 

Let M and M' be two nonvoid disjoint attractors from 6 0 , 6~ 

respectively. Each is bounded, closed and connected. By uniqueness, 

irrespective of the controller used, no trajectory from xO may be attracted 

to both M and M' which means that [:,0 n [:,' 
0 = ¢ . Conversely, since 

M c 6 0 we have M' c 6~, and the fact that 6 0 n 6' 0 = ¢ yields MnM' 

Hence, the result given below follows. 

PROPERTY OF DISJOINTNESS I: Regions of attraction of any two connected 

attractors are disjoint if and only if these attractors are disjoint. 
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It follows that the pair ~O' 6~ is a partition of 6 0 u ~~ and thus 

given the same controller, trajectories attracted M and M' form classes 

defined by this property or equivalence classes with respect to attraction. 

This leads to the following. 

PROPERTY OF IDENTIFICATION I: Given a control program, trajectories 

attracted to a distinct stable attractor form an equivalence class among 

those that start in the union of regions of attraction. 

Let M and M' be uniformly stable, thus also uniformly asymptotically 

stable. This feature is essential for determining the state space pattern 

of attraction via numerical integration of the state equations. Since by 

Property of Identification I the trajectories attracted to M form equiva

lence class, it suffices to find one of them in order to determine all 

trajectories from the region of attraction 6 concerned. The boundary 
AT 

d6AT is found by the so called "retrograde" integration, that is, solving 

the state equations for T = -t from initial conditions located at some 

Liapunov level (V - functional level) close to the attractor. The "retro-

trajectory" obtained will, for q + 00 or t + 

which generates d6AT , see Chapter 5 for details. 

coil up on some V-level 

To illustrate the property of identification and the above, let us 

consider the Van der Pol's equation given by 

) 
where s is a parameter. For the case s 

is an asymptotically stable equilibrium. 

(4.1.20) 

2.5, u - 0, the origin x o 

Figure 4.6 shows the evolution of the region of attraction to x (t) :: 0 

obtained by employing the iterative retrograde integration. The closed 

Fig. 4.6 
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E-levels E_ I , E_z and E_ s are the retro-images of the initial E-level 

ED respectively obtained at time tl = -1, t z = -2, ts = -5. The curve 

E_ s coincides with the total region of attraction. Any points of E_s can 

be mapped forward into ED after time ts' Two such trajectories with 

initial conditions xO (-1.0,2.5) and xO (1.8,0.0) are shown in Fig. 

4.7(a) with time history in Fig. 4.7(b). For more details of the method 

employed, the reader is directed to the monograph by Hsu [lJ and later 

works by Flashner-Guttalu [lJ, Guttalu-Flashner [lJ and Guttalu-Skowronski 

[lJ. The method is based on cell-to-cell mapping (ED -+ E_s) introduced 

by Hsu [lJ and on the Property of Identification I. 

3:2 x1 
x 2 

4 

-1 x1 

-1 

(a) (b) 

Fig. 4.7 

Two closed sets are called non-ovepZapping if and only if their 

interiors do not intersect. When Property of Disjointness I holds, two 

closures l:.AT' l:.~T do not overlap. However, such sets may still partition 

their union, now closed, and the Property of Identification I holds. Then 

given a controller for each M, there is a set S called the sepapatm: 

S ~ a6AT = ~AT - 6AT fencing the class of trajectories identified. For 

the Van der Pol equation discussed, the unstable limit cycle is such a 

separatrix between the class of trajectories asymptotically attracted to 

the origin and the class attracted to infinity. Indeed, taking V(·) 

= E(x) = (x~/2) + (X~/2) we have vex) = E(X) = -£(l-x~)x~ which makes 

(0,0) an asymptotically stable limit point attracting from some neighbor-

hood up to Z xl = 1, which yields E(x) = 0 and generates A-producing 

the said separatrix. The damped separatrices of Example 1.1.1 are another 

good illustration of separating the equivalence classes of trajectories 

attracted to different attractors. still another case may be shown in terms 

of the Dufting's equation already discussed. As above, we take the con-
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troller as given and substituted already, and adapt the simulation results 

of Guttalu-Flashner IlJ in the following example. 

EXAMPLE 4.1. 4 • Consider the following subcase of the Duffing equation: 

} (4.1.21) 
Yl Y2' 

Y2 - dY2 - kYl - yi + u 

where d, k and S are damping and elastic parameters. The equilibria are 

located at (0,0) and (±I-k/S, 0) By the transformation Y2 = I-k/S xl 

y 2 = I-k/S x 2 ' we have 

Xl x 2 ' 

){2 = - dX 2 - kX 1 (1 - x~) ) (4.1.22) 

whose equilibria are now at (0,0) and (±l,O). We choose the parameters 

k = -2, and d = 3, u = a for free Duffing's system for which (0,0) is 

a saddle and both (+1, 0) and (-1, 0) are asymptotically stable equilibrium 

points. Figure 4.8 shows the regions of attraction of the two stable equil

ibrium points computed using the algorithm described before, following 

Flashner-Guttalu [lJ. They are equal to regions of asymptotic stability. 

The manifolds of the separatrices at the origin divide the phase plane into 

two separate regions of attraction as shown in the figure which illustrates 

the Property of Disjointness I. It is easy to observe that the trajectories 

in each region of attraction are of the same character, confirming the 

Property of Identification I. 0 

80 

60 

AO 

20 

a 

-20 

-AO 

-60 

-80 

-100 
-20 -15 -10 -5 a 5 10 15 

Fig. 4.8 
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In higher dimensional state spaces, defining the separatrix surface is 

not an unique or easy task, as it must be done solely on the grounds of the 

numerical procedure. Then the help of the Properties of Identification I 

and Disjointness becomes essential. We illustrate the case with two well 

known spatial examples, first the 3D Lorenz equation and then 4D double 

Van der Pol's equation. 

EXAMPLE 4.1. 5. The Lorenz equation is 

Yl a(y2. -Yl) , 

} Y2. rYl - Y2. - Y1Y3 (4.1.23) 

Y3 Y1Y2. - bY3 

where a, r and b are positive constants which define the physical charac

teristics of the system, see Thompson-stewart [IJ. Some of these parameters 

may be considered given control variables. With the transformation 

Yl = I(b(r-l»x l, Y2. = l(b(r-l»x2. and Y3 = (r-l)x 3 , the above system 

becomes 

which has 

a (x2. - xl) , 

rX l - x2. - (r -1)x l x 3 

b(x l x2. -x3) 

equilibria at -el x 

For the case a = 10 , r = 2 

} 
(0,0,0) 

and b 
_e3 

both asymptotically stable. x are The 

(4.1. 24) 

_e2 = (1,1,1) and xe3 = (-1,-1,1) x 

8 , -el is unstable while -e2 and x x 

two attractors 
_e2 

and 
_e3 

x x are 

disjoint. Through the property of Disjointness I, we can separately calcu

late the regions of attraction of xe2 and xe3 However, by the Property 

of Identification I, it suffices to compute just one trajectory. Figures 

4.9 show the projections of the region of attraction of ~e2 onto the 

three principal planes For the sake of 

clarity, the subset of attraction shown is only a small portion of the 

entire region. D 

EXAMPLE 4.1.6. Consider the following coupled Van der Pol's equations, see 

Hsu [lJ, 

Xl x 2 ' 

} 
X2 

2 - (1 + \I)x l + \lX 3 ' \.l(1-x 1 )x2 (4.1.25) 
x3 x" ' 

x" 
2 + \Ix 1 - (1 + n + \I) X 3 ' \.l(1-x 3)x" 

where \.l, \I and n are system parameters with obvious meaning. Here, we 

treat a case for which the origin is asymptotically stable. For the values 
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of the parameters ].l = -0.40, n = 0.2, and \! 

esses an asymptotically stable attractor at -e x 

0.1, this system poss-

o and two unstable 

periodic solutions (limit cycles) which bound the domain of attraction of 

xe = O. Figures 4.10 show the projections of the regions of attraction of 

the origin on the Ox1x 2 ' Ox 1x 3 ' Ox1x", Ox 3x 2 ' Ox2 x" and Ox 3x" 

planes. The two unstable limit cycles are identified in this figure by the 

symbols A~ and A~. For the values of the parameters ].l = 0.40, n = 0.2 

and \! = 0.1, the local stability character of the three attractors are 

reversed. The two asymptotically stable attractors (limit cycles) are 

disjoint and their domains of attraction have been found to be disjoint. 

The conceptual properties of disjointness and identification of attractors 

have been quite useful in calculating this higher dimensional example. 

X2 x2 

3 2·5 

2 1'5 

0·5 
0 0 

-0,5 
-1 

-2 (a) -1·5 (b) 

-2 -1 0 2 3 :Xl 
-2·5 

-3 -2 -1 0 2 3 :Xl 
3 2·5 

2 1·5 

0 

-1 

-2 (e) -1'5 (d) 

-3 -2·5 
-3 -2 -1 0 2 3 :t1 -3 -2 -1 0 2 3 Xl 
3 3 

2 2 

0 0 

-1 -1 

-2 (e) -2 (f) 
-3 

-2 -1 0 2 3 x1 -3 -2 -1 0 2 3 x, 

Fig. 4.10 
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We turn now to real-time attractors. We already stated that each such 

attractor will contain at least one positive limit set and thus it should 

contain at least one attractor. On the other hand, it is obvious that since 

all trajectories attracted to fIB in real time from some flo c f,BO stay in 

t -+ 00, there are no attractors in f, - f, 
o B 

Consequently we have 

the following property. 

PROPERTY OF EMBEDDING. It is always possible to find ~o covering a real 

time attractor fIB which either encloses an attractor M or is disjoint 

from it, in which case flo n f,AT = ¢ . 

We may illustrate the application of the above embedding with the case 

in Example 4.1.4, see Fig. 4.8. Here, the real time attractors may be drawn 

as an open target set about each of the attractors with f,BO Con-

sequently af,B coincides here with separatrices, except at the entrance to 

fIAT's marked by arrows in Fig. 4.8. 

From the Property of Embedding, we may also conclude that f,BO - fIB 

contains no attractors. Hence either f, = f, 
BO AT 

as in Example 4.1.4, or 

af,BO separates attractors and the distribution of f,BO determines what may 

be used to locate attractors in f,. 

By the uniqueness of trajectories, irrespective of the controller 

involved, no trajectory from xO may tend to both fIB and f,~ , provided 

they are disjoint, see Fig. 4.11. Hence fIB n f,~ = ¢ implies 

f,BO n f,~o ¢ 

implies fIB n 

On the other hand, if then 

f,' = ¢ . 
B 

Hence we have the following property. 

Fig. 4.11 
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PROPERTY OF DISJOINTNESS II. Regions of real time attraction are pairwise 

disjoint if the corresponding real time attractors, selected from a finite 

sequence, are disjoint. The converse holds if for at least one member of 

any pair liB' lI~ we have liB c lIBO . 

Given two liB lI' , B with their regions lIBO ' lI' 
BO' there must be 

T = M max (TB, T~) such that for t > TM all trajectories from lIBO u t:,' 
BO 

stay in t:,B u t:,~ The argument obviously extends to any number of t:, IS 
B ' 

whence we have the following property. 

PROPERTY OF U~B' Given a control program, the union of a finite sequence 

of real time attractors attracts in real time from the union of the corres-

ponding regions. 

The above is well illustrated in Fig. 4.8. Now let the trajectories 

start at t:,BO n /::,' 
BO 

By uniqueness, all of them must be real time 

attracted to t:,B n t:,' 
B after TM = min (TB,T~) Again this is true for 

any finite number of attractors and we have the following property. 

PROPERTY OF n~B' Given a control program, the intersection of a finite 

sequence of real time attractors attracts in real time from the intersection 

of corresponding regions. 

From the Property of Disjointness II, it follows that, given the finite 

sequence of disjoint real time attractors t:,~, k = O,I,2,···,~<oo, the 
k sequence partitions the union Uk~B and thus we obtain the following 

identification property. 

PROPERTY OF IDENTIFICATION II. Given a control program, trajectories 

attracted to a member of a finite sequence of real time attractors form an 

equivalence class among those starting in the union of regions of real time 

attraction of the sequences. 

The discussion regarding attractors in Examples 4.1.4 -4.1.6 applies 

here directly. 

Following the same argument as used for Identification I, we may prove 

Identification II for closures 

separatrix S ~ E - t:, 
F BO BO' 

E and introduce the real time or finite 
BO 
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Both attractors and real time attractors are final in the sense that 

the solutions cannot be attracted elsewhere. It is of some interest to 

study tqe relationship between peal time and tpansient attpaatops. Two 

types of transient attractors may be discussed in terms of our topic. The 

type that forces the motions to enter ~B after they have left the transient 

attractor ~BT defined below, which steers or aonduats, denoted ~BP' and 

the type which does not do that, for example, allows motions to drift every

where including a bounce off some ~B after ~BT' We shall successively 

discuss these two types. A similar notion to conductor appears in Russian 

literature under the name of "bridge", see Krassovski and subbotin [lJ. 

We delete trivial cases by assuming that ~B n ~BP ~ ~ . Then by 

continuity of trajectories in xo, no part of the sets ~B' ~BP is empty. 

It follows that, given a control program, there must be at least one 

trajectory from ~BO that passes through ~BP before entering ~B' see 

Fig.4.12(a). Hence there must also exist a nonempty set ~BPO c ~BO such 

that trajectories from ~BPO and only those trajectories exhibit the above 

property. We shall then say that ~BP is a aonduatop from ~BPO to ~B' 

the set ~BPO being the pegion of aonduation. Assuming ~BP c ~BO we have 

~BP c ~ and conduction becomes a specified version of transient attrac-
BPO 

tion, namely that which takes trajectories from ~BT into ~B' 

(o) ( b) 

Fig. 4.12 

The significance of conducting transient attractors becomes obvious 

when considering them as geometric loci of transient responses of the 

system to some external inputs which finally steer the system trajectories 

to a steady state limit enclosed in some ~B 
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PROPERTIES OF CONDUCTORS 

(a) 

Otherwise, the definition of ~BPO is contradicted, that is, it would be 

possible to find trajectories from ~BPO which do not pass over ~BP (type 

II in Figure 4.l2(a». 

(b) ~ n ~ c ~ 
B BP BPO 

This follows from ~BP c ~AP and the conductor property (a) above. It 

means that some trajectories from ~BPO start at t..Bp . Then also 

(c) 

Indeed, we have ~B n ~BP ~ ~ which, together with ~B c ~BO yields the 

hypothesis by virtue of the definitions. This property means again that 

there is at least one trajectory entering ~B from ~BP thus yielding 

~BPO ~ ~ 

(d) ~AP is connected. 

Indeed, should we have two disjoint members of ~ and the connected ~B' 
BPO 

the trajectories would have to cross ~BO - ~BPO on their way to ~B' which 

contradicts the definition of ~BPO. 

(e) f'" c f'" ~ f'" = f'"BPO B BP BO 

This is a rather specific case, see Figure 4.l2(b). There may not be tra

jectories entering ~B at tB without crossing. ~BP' say, of the type II. 

This yields ~BO c ~BP' but by definition, ~BPO c ~BO thus ~BO = ~BPO . 

Conversely, if ~BO = ~BPO' all trajectories from ~BO pass through ~BP 

and only such trajectories start in ~BO' which means ~B c ~BP . 

The conductor properties are easily seen in the examples quoted in this 

section already. They may seem trivial for the case of the 2D state space. 

However, they become useful in higher dimensions and when the control objec

tive ceases to be just a single, well defined property, as it has been so 

far. The conductors and non-conducting transient attractors (leading to 

nowhere) will become important for objectives with conflict, that is, in 

our qualitative dynamic game to be discussed in Chapter 8. We leave our 

further discussion of transient attractors to that chapter. 
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EXERCISES 4.1 

4.1.1 Find a positive limit set A+(x) of the system 

q + (q2 + q2 _ 1) u + q 0 

with the program u q and determine the region of attraction 

to such a A+. How many periodic points are in this region? 

Which subsets of I'!. are positively or negatively invariant and 

how do they relate to A + ? 

4.1.2 Prove that no trajectory of a dynamical system in I'!. reaches a 

critical point in finite time. 

4.1.3 Prove that A+(x) X E JRN of a dynamical system in I'!. is closed 

and invariant. 

4.1.4 Show that the equation 

has at least one periodic motion. Discuss uniqueness of such a 

motion. 

4.1.5 Return to Exercise 2.1.9 and consider the I-periodic dynamical 

system (*) for which we have 

i = 1,2 

Show that the state trajectories consist of: 

(i) the critical point {O}; 

(ii) the periodic orbit coinciding with the unit circle; 

(iii) spiralling trajectories through each point (r,8) 

where r 'f 0, r 'f 1 

Then show that for the region 0 < r < 1 the unit circle is A+ 

while the origin is A For r > 0 the unit circle is still 

A + while A = <P • 

4.1.6 Consider the system 

xl Xl - x 2 + 2 2 (-4x I - 5x 2 )X I 

X2 Xl + X2 + 2 2 (-3x I -4X 2 )X 2 

with the test function and show that there are 

two circles centered at (0,0), the outer r = Ix 2 + x 2 = 1 I 2 

covered by entry points and the inner r = 1/3 covered by exit 
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points for the trajectories, bounding the periodic orbit r 

which is the limit set A + . 

1/2 , 

4.1.7 Study the trajectories of the system 

Xl (Xl -X 2)U 

X2 (Xl +X 2)u 

1 2 2) with V = "2 (Xl + x 2 and show that under the controller 

1 2 2 A+ U = 4 xl + x 2 1 there is a limit cycle defined by the 

ellipse 1.. x2 + X2 = 1. How can the A+ be controlled by 
4 1 2 

changing the above specified control program? 

4.1.8 Consider the forced Van der Pol system 

q + u(q2_ 1 )q + q w sin wt 

with q(t) E lR, w E [O,l], lui :0; u and w being the perturba

tion frequency. 

(i) For the system without uncertain perturbation (w = 0) find 

the controller (u < 0) which generates dissipation for I qO I < 1 

towards A+ = (0,0) and accumulation for IqOI> 1, and the 

controller (u > 0) which produces the opposite accumulation for 

IqOI < l from A- = (0,0) to A+ located outside the circle of 

radius 13. 

(ii) For the uncertainty at its upper bound w = 1 find the 

controller (u < 0) generating the stable limit cycle A+ with 

radius 2. show that when w is equal to the frequency of the 

unperturbed case w = 0, the perturbation function has maximum 

effect. 

(iii) For a given initial value (qO ,ci°) discuss two separate 

trajectories of (i) and (ii) respectively and the reachability 

cone achieved by them. 

4.1.9 Discuss the possible responses of the system of Problem 4.1.4 

with w = 1 and small values of u < ° . 
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4.2 VIBRATING PANEL UNDER DISSIPATIVE CONTROL 

The following is a case study of the global pattern of vibrations of 

an elastic panel under a dissipative controller acting persistently, thus 

generating the dissipation inequality (2.4.20) along all trajectories from 

6L • It makes the system passive. We want to treat this study as an 

illustrative example to our discussion in Sections 3.2, 3.3 and 4.1. 

We consider a half-cylindrical resilient panel of infinite length, 

hinged at the ends along generatrices upon an absolutely rigid foundation, 

with the mass of a unit-length lumped at the center of gravity, that is, 

in the middle of the span, therefore reducing the model to the single

degree-of-freedom case. It suffices to study the motion of the cut through 

the mass along the span, Fig. 4.13. The panel admits finite (not small) 

amplitude oscillations about several of its possible equilibria. 

Fig. 4.13 

The control program is dissipative and selected in such a way as to 

reduce the non-potential forces to linear positive damping, thus after 
. • 6 

substitution, resulting in F(q,q,il,w) + D(q,q,w) :: 29,q, 9, > 0 The 

restoring characteristic is, in the general shape, IT(q) = aq + Sq3 , as 

in Section 2.3 with all the axioms holding almost everywhere in 6L • We 

shall specify it below, see Fig. 4.14. Thus the equation under study is 

generally 

(4.2.1) 

with the initial conditions (qO)2 + (qO)2 20, and sufficient required 

initial energy 

qO 

t (qO) 2 + V(qO) 2 J IT(q)dq, 
o 

see Section 2.4. 

(4.2.2) 
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I 

Fig. 4.14 

The restoring characteristic represents a spring force in the panel 

and will have a few branches depending upon the specified ranges of deflec

tions. The spring force values are those of the static load Q which 

executes the deflection. There are four various static equilibrium ranges 

(modes) specifying the mentioned ranges of deflection, see Fig. 4.14: 

I: no inflection, buckling opposite to the direction of Q; 

II: with one or several inflection points; 

III, III I : no inflections, buckling in the direction of Q,-Q 

respectively. 

For the non-engineering reader, it may be instructive to go once again 

through the role of the static characteristic in this perhaps slightly more 

complicated example. Engineers may choose to ignore the remarks immediately 

below. 

Suppose the panel is put on a static testing stand where we shall check 

its response to constant loads Q successively growing but maintaining each 

time the instantaneous balance between Q and the spring force -II in the 

panel, that is, maintaining the static equilibrium. Observe that for the 

sake of this balance, Q has the opposite sign to the spring force, thus 

the same sign as II. Now glance at Fig. 4.14. Under increasing Q, the 

deflection q increases and these circumstances continue within I, that is, 
(4) 

until some value of q, say q , where the stage II begins: the panel 

has bent in, and with q increasing, smaller and smaller Q is necessary 
(2) 

to balance -II. Eventually, for some value q the required Q vanishes, 

the balance, if at all, is kept by the reaction in the supporting bearings, 

the equilibrium is Dirichlet unstable and any further increase of q 

requires -Q, that is - (-TIl , to keep the balance. Then I-Q I grows rapidly 

with growing q and the system has a strong tendency to jump from the 

unstable equilibrium to a different structural form guaranteeing stability 

of the structure. Then the phase III begins, where Q grows safely again 

194 



www.manaraa.com

up to breaking the panel. The latter situation occurs also when, having 

started from q = 0, we proceed in the opposite direction, that is, for 

q < 0, range III', which requires -Q at once. 

It is rather amazing how many biological and social or political 

phenomena may be modelled on this very type of static characteristic, and 

thus later dynamically analysed along with our present example. Indeed, 

"overplaying one's hand" is proverbial in many languages, and there is a 

whole "catastrophe theory" along these lines developed not long ago. We 

hope the reader may also appreciate the imp'ortance of limiting the ampli

tude in oscillations about any of the mentioned static equilibria, in 

particular, about q(2) = 2a and what is even more essential, the import

ance of controllability either to q = 0 or to q = q(2) just as desired. 

Having described the static test, we may now substantiate introduction 

of the following branches of TI. 

(A) TIA(q) aq + SAq3 q E (_co, 0] a,SA > 0 due to III' . 

(B) TIB (q) aq + SBq3 q E (0,2aJ where a is the buckling 

distance and a > o , SB < 0, comprising I and II. 

q E (2a,co) , a, Sc > 0, due to III. 

(B) is rather the "eventful" branch, thus requiring special attention. 

Obviously (A) and (B) must be made to join smoothly: 

TI~ (0) = TI~ (0) . (4.2.3) 

In anticipation of II, TIB must be made soft and start at 0 with the 

tangent below y This requires TIB (q) /q > TI' (q) q = 0+, which 

means SB/aB < 1 as assumed. Let -SB S' > 0, then TIB has two zero 

values at q(l) = 0, q(2) = (a/S')~ and the maximum q(4) = (a/3S')~. 

The points q(l) ,q(2) are the extremal arguments of the potential energy 

VB(q) = J TIB(q)dq , 

and from V~(q) = ~(q) = a-3S'q2 it follows that q(l) is the stable and 

q(2) the unstable equilibrium (maximum if S'/a > 1/13, inflection if 

S' /a = 1/13) which agrees with our description of the static test, and 

justifies the choice of TIB . Similar justification is readily obtainable 

for TIA , TIC . 

It is instructive (and applicable in Synthesis) to discuss the influ

ence of coefficients, in particular, of the "eventful" branch TIB . To this 

aim, we rewrite 
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in order to discuss the conclusive ratio S'/a > 0, call it softness of IT . 

Obviously, the growth of 13 '/a decreases q (2) = (a/S')!:;, but parti

cular stages of this "softening" may be of interest. Clearly, for 13' = 0 

(in fact, excluded), there is no q(2). For 0 < S'/a < 1/4a2 , q(2) is 

too far: q(2) > 2a, which makes it lose its physical sense. For 
2 (2) S'/a = 1/4a we have q 2a yielding continuity of IT with a corner 

(undefined derivative) at the point. Now if S'/a = 1/4a2 and still grows, 

q (2) tends to ql and ITB (q4) tries to escape to infinity eo-ipso out of 

our model. 

In the meantime, we have observed already that S'/a > 1/1:3 makes 

V (q(2)) = a 2/4S' the maximum thus a distinct threshold, while S'/a 1/1:3 
B 

makes it an inflection only, cf. Fig. 4 .. 14. Observe moreover that 

(4.2.4) 

We foreshadow that in order for the model to perform the preseribed role, 

the eonsisteney with physieal eonditions requires the softness to remain 

1/2a2 > S'/a > 1/4a2 

We may turn now to the state-plane pattern. The trajectory equation 

can also be written: 

§ 219; + Ot:f.+ 13'9:3 
q ::; o , q > 2a (4.2.5) 

dq q 

~ 219; + aq - 13'9: 3 
0 < q !> 2a (4.2.6) 

dq q 
, 

where we have assumed 13' = SA = Sc in order to simplify matters. First, 

we must define the reference system. The total energy is 

H~,C(q,q) (4.2.7) 

( .) 1.2 a 2 13' 4 
HB q,q = 2" q + 2" q - 4" q . (4.2.8) 

Consequently, the topographic surfaces, now lines, are 

.2 2 1 Q 4 ' 
EC : q + aq ± 2 ~'q = 2hc = hc ' (4.2.9) 

successively for (A), (C) and (B). Here again we shall base our analysis 

on (B). Indeed, the branches (A), (C) are hard, and thus generate no 

thresholds. Whatever the shape of H over (A) -, (C) - arguments, to each 

Zc : EB(q,q) = hC there will correspond some level over (A), (C) and the 

threshold of EB determines the topography. Calculation of the threshold 
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is inunediate 

(2) a. (a.) 13' (a. ) 2 a. 2 

EB (q ,0) ="2 S' -"4 S' = 413' 

We can now find ECE = Clt.E simply by picking up those EC over (B) and 

(A) - (C) that correspond to the threshold 

2 
·2 + rvrT 2 + ~ 13' 4 _ ~ 
q ~ - 2 q - 213' (4.2.10) 

The line was called the separatrix. It includes the plane separating set 
(2) 

and q In fact, for q E (0,2a], the result is the same, as it might 

have been if defined by requiring some EC to pass over q(2) • 

Incidentally, the local character of the conservative trajectories 

about q(l) and q(2) is obtainable via the known plane Poincare analysis, 

cf. any quoted textbook. The result is that q(l) the so-called saddle

point, which is obvious from Fig. 4.15, as well as from our description of 

t.E in Chapter 2. 

EC:hC = 0 '2a 

Fig. 4.15 

q,(2) = 2a 

Fig. 4.16 

We turn our attention now to the region to the right of ECE ' q > 2a 

in which the conservative trajectories cross the q - axis only once and do 

not cross the q - axis. The picture is obtained owing to the alleged shape 

of H to the right of q(2). According to our theoretic description in 

Section 2.3, this shape depends 

observed already that V(q(2» 

inflection (if 13' fa. = 1/13) . 

upon the driving function V(q). We have 

is either a maximum (if 13'/a. > 1/13) or an 

In the first case, E(q,q) decreases for 

q > q(2); in the second, it is monotonically increasing up to the boundary 

of t.. In the latter case, the panel is simply too stiff to perform any 

jumps. The second minimum of V being unobtainable, thus the second cup 

degenerated, we have only one basic cup about q(l) , and as the reader 

expects, the state-plane pattern is then local, thus of no interest at the 
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moment. It is also inconsistent with the proverb "too far East is west" 

applicable before, for nothing really happens when we push too far - the 

panel just breaks. 

Thus let us consider the first case with the maximum 

v ( (2» a 2 

B q 4S' 

For q > q (2), V(q) decreases and so does E (q,q) making H fall down the 

hill from the saddle EB(q,q) = a 2/4S' along the well's river V(q) through, 

till E (q,q) = 0 and still further .•. to a physical nonsense, of an 

indefinite sink of energy, see Section 2.3. Fortunately, much sooner than 

that possibility, the system will respond by a jump to the phase III and 

the shape .(C) of the characteristic, securing the endangered axiom (2.4.21), 

and, safeguarding the dissipativeness in-the-large which would not survive 

otherwise, see Section 3.3. Clearly, the least sensible value of energy is 

zero which determines a topographic line that cuts the q - axis at, say q5; 

the latter from 0 2 + aq2 - -} S'q4 = 0 which gives q(5) = (2a/S')~. Thus 

in order not to lose all the energy before the jump, we must have q5 > 2a , 

which immediately conditions either the buckling distance a < (a/2S')~ or 

the softness S'/a < 1/2a2 The latter agrees with the first condition of 

(4.2.4). Indeed, in order for the system to pass from vibrations about the 

unstable equilibrium over to vibrations about the new form of stable equil

ibrium (stabilize itself), it is obviously necessary to have a non-negative 

difference between potential energies at the new, stable equilibrium q = 2a 

and the basic equilibrium q(l). The least we must have is V(O) = V(2a) 

which happens to be the most convenient solution. We have to assume 

S'la = 1/2a2 and obtain q(5) = 2a. The jump is avoided but the aim is 

achieved; let us say the jump simply occurs under the right circumstances. 

The reference system of this case is illustrated in Fig. 4.17. The 

point q 
(5) 

= 2a becomes the new stable equilibrium. The branch TIc (q) 

now in force for q > 2a is hard and the topographic pattern does not 

differ from that discussed for q < 0 By the same argument as for (A), 

the threshold VB (q(2» applies here and we simply expand the ECE to this 

region. We obtain two cups on the same (basic) energy level. 

The levels Zc and the lines EC everywhere are now those defined by 

EB . Note that in this case we have left quite a freedom to the designer's 

synthesis of our panel, by requiring S'/a = 1/2a2 He may choose either 

to adjust the material in order to get the appropriate softness, or to 

adjust the construction to get a proper buckling. Finally, he may do both 
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q.(S) 

q. 

Fig. 4.17 

adjustments, actually playing with them as one opposes the other. However, 

nothing is really discouraging in the fact that the above case may not be 

achieved. Indeed, the requirement V(O) = V(2a) linked with ~'/a = 1/2a2 

was the least we had to have from the reasonable range V(2a) ~ V(O) with 

~'/a < 1/2a2 , cf. (4.2.4). Now, making the domains of (B) and (e) gradually 

more and more overlapping, that is, increasing the negative difference 

between 2a and q(S) by the decrease of ~'/a + 1/4a2 , we move q(2) + 2a 

and approach the second border-case allowed, namely ~'/a = 1/4a2 We 

recall here our former argument that ~'/a < 1/4a2 does not make sense 

physically. 

For q(2) = 2a the restitutive characteristic is continuous, there 

is no jump, cf. Fig. 4.14, we have only one cup, cf. Fig. 4.16, and the 

study is local. 

We may now confirm the selection of ~'/a € (1/4a2 , 1/2a2 ) for the 

sake of maintaining a reasonable "jump under control". In fact, it is quite 

clear that 1/4a2 , 1/2a2 are the biful'cative values of the softness 

coefficient. 

k---- 20 

Fig. 4.18 
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It will be convenient for our later discussion to stick to the case of 
(5) 2 

two stable equilibria with q 2a (B' /0, = 1/2a ), described first, 

cf. Fig. 4.17. Let us discuss the damped oscillations in this case, with 

the non-local problems in attention. The damping is positive, thus 

since Q, > 0 • It is an immediate conclusion that 
(1) (5) 

q , q are asymp-

totically stable. As a rule, since E(q,q) < o , q f. 0 , no trajectory 

that had entered ll~ , ll~ may leave these sets which are thus positively 

invariant with ultimate boundedness. Consequently, they are final attrac

tors, each with an attractor enclosed. It would be a huge underestimation, 

however, to assume ll~, ll~ as the regions of attraction ll!T' ll~T respec

tively. These reach much higher energy levels than the threshold 

E(q(2),0) 

and thus include more than the set II = llo U III 
LEE 

(llL is defined by the 

highest threshold; in our case, there is only one threshold), see Fig. 4.19 

q. 

Fig. 4.19 

From section 4.1, we· have that 

llo 
AT 

n III 
AT = <P 

that is, ~!T III 
, AT 

tion I, it suffices 

is a partition of ll. By the Property of Identifica

to find one trajectory from ll!T or ll~T to describe the 

other. And we have been instructed to do so via the retrogression. On the 

other hand, we not only need to identify trajectories from or 

but also to locate them in the phase plane, thus we need to know the size 

of these sets, obtainable by defining boundaries, and that means estimating 

them by damped separating sets, in our case damped separatrices, cf. 

Fig 4.18. From Section 4.1, we know that they belong in part to the 
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equivalence class of trajectories approaching the corresponding equilibrium, 

and from section 2.3 that they enclose the unstable equilibria - we then 

retrace (negative time) a trajectory that happened to touch the unstable 

equilibrium, which in the plane case indeed separates Il~T from Il~T' see 

Section 3.2. The question is, how can the retracing be done without solving 

the equation? We do it with the power series approximation. We move the 

origin to q(2) using (q,q) -+ U;:,q) such that ~ = q _q(2). Since 

q(2) (a/S')l.:!, we have 

and 

dq -2£q - TI2(~) 

d~ q 

or 

q (~~ + 2£) 

Let z = -~ , 

. ) (dq n) - q (z dz + 2;c 

We develop q(~) at ~ = 0 into q(~) = al~ + a3~3 + ... or 

On substitution, 

Multiplying and comparing coefficients of like powers, we obtain 

S' 

that is, 

£ ± ~ (£ 2 + a) l.:! _ ~ 3 S I 
2£±4(£2+ a)l.:! 

(4.2.11) 

for an approximate equation of two branches of the damped separatrix in a 
(2) 

neighborhood of ~ = 0, that is, q . 

We want to distinguish some locating points for the damped separatrix, 

and its crossing the q - axis may as well do the job. Substituting 
(2) l.:! 

~ = -q = -(a/S') , we obtain 

• (2) , (3) 
q 

see Fig. 4.18. 

(4.2.12) 
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The conservative (frame-of-reference) counterpart of 
• (2) • (3) 
q ,q 

obtainable by substituting q = 0 into (4.2.10). The result is 

On the other hand, assuming ~ o in (4.2.12), we obtain 

is 

The difference between and 
• (2) 
q~o shows the approximation error 

of (4.2.12), which is considerable indeed! We could have done better 

staging the return (~,q) + (q,q) directly at (4.2.11) and then calculating 
• (2) 
q However, even then, there still would have been an error owing to: 

(i) 

(ii) 

(2) 
the fact that (4.2.11) holds locally about q ; and 

cut off terms of the series. 

OUr point is that there always will be some error. Its size does not matter 

as long as we do not make practical conclusions, so we may as well take the 

present one. Once there is an error, it is important to be on the safe 

side. Using (4.2.12) for lI~T and CrcE(O) 

Fig. 4.17 and Fig. 4.18 superposed. 

for II 0 we are safe. Envisage 
AT' 

For any other ~ > 0, q (2) calculated from (4.2.12) is smaller than 
• (2) n 
q~=O' it decreases with " increasing but may not come below for 

obvious reasons. 

4.3 SELF-SUSTAINED MOTION. AIRCRAFT FLUTTER 

Describing the energy-in-the-well for passive systems, we have let the 

minima of cups be open sinks for out flowing energy. Envisage now that they 

become, at least partially, sources. The falling down energy-state

trajectories somewhere on their way shall meet influxes which come from 

these minima open now to supply. The influxes may raise the energy levels 

as high as eventually allowed under the limited accumulation axiom, the 

limit measured by the amount of energy available, while the system remains 

autonomous. The system has the option of internal energy transfer through 

some mechanism which usually closes the energy in a periodic manner, with 

frequency corresponding to a natural frequency of the system. The influx 

of energy makes the basic equilibrium unstable. In the linear model of 

the system with a single equilibrium and no other steady states, we would 

have the amplitudes of motions growing indefinitely. Fortunately, the real 

structure is nonlinear, and the increase in amplitude is accompanied by the 
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increase in nonlinearity which usually damps the amplitude, leading to a 

steady state regime. The latter, owing to the periodic energy supply, is 

periodic. Real situations in which the above scenario occurs are those with 

negative damping, see section 2.3, frequently related to coupling between 

a particular OaF, thus appearing in systems with at least two OaF. We refer 

to the cases of negative damping in autonomous systems as to self-accumula

tion, as opposed to hetero-accumulation induced by external perturbations 

in the nonautonomous systems. 

The physical criterion for testing the self-accumulation in a free 

system is the fact that it is absent at rest, see the axioms on negative 

damping (2.4.12). Another sufficient feature is the presence of a periodic 

limit trajectory, as described above. If the dynamics of the structure 

generates such an option, a perturbation from the basic equilibrium could 

move the system to a stable, possibly destructive high amplitude periodic 

limit trajectory. A helicopter on the ground but autonomous, that is, not 

subject to ground resonance, is a good example. A small perturbation 

from the rest position will only cause a transient disturbance, but a large 

perturbation, like a heavy wind gust, may cause a jump towards a stable 

limit cycle, see Tongue-Flowers [lJ. Other air or fluid induced self

accumulation examples are aircraft flutter, discussed in this section, and 

oil or steam whirl-whip auto-vibrations of rotating machines which we 

discuss in Section 5.6, see Muszynska-Franklin-Bently [lJ. 

The controller may take the role of either positive or negative damp

ing, depending upon the objective. It is, however, more likely to be the 

first case as the auto-accumulation is usually an undesired phenomenon in 

mechanical structures. The action-scheme of the auto-accumulating system 

is represented in Fig. 4.20, which is an extended part of the scheme in 

Fig. 2.1. The elements: source or plant, could be linear but at least the 

program, which is now solely state (feedback) dependent, must be nonlinear. 

Obviously, all connections are multiple. 

SOURCE PROGRAM 

Fig. 4.20 
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We shall explain the mechanism of the negative damping in the typical 

example of dry friction between a weight and a surface moving on drums, 

mentioned already in Section 1.5. 

Consider a mass m attached by a massless spring to a frame. The 

mass rests upon a horizontal rough surface which is gradually brought to 

move with the uniform speed V directed as shown in Fig. 4.21. Neglecting 

the initial disturbance, we might assume that the mass would take a position 

of equilibrium determined by a friction force D and the equal but opposite 

tensile force II in the spring. Experiment shows, however, that this 

position is unstable and that horizontal vibrations of the mass will be 

built up. To explain the phenomenon, we must take into account that the 

Coulomb (dry) friction is not constant but diminishes slightly with the 

increase of the relative velocity. If, owing to some outside disturbance, 

vibrations of the mass have started already, the force D, always in the 

direction of the velocity V, will become larger when the mass moves in the 

direction of V and smaller when it moves in the opposite direction. In 

the first case, D produces positive work while in the second, the work is 

negative. OVer a cycle of vibrations, a net work is positive, yielding an 

accumulation of energy. 

Fig. 4.21 

Dry friction is responsible for swinging of the Froude-pendulum where 

the self-excitation phenomenon was first observed; it is responsible for 

crushes of steel cutting tools in machines and playing a violin, to quote 

physical examples. Identical models, however, carry us as far away as to 

the dynamic description of ••• revolutions, in social science modelling. 

Another phenomenon producing auto-accumulation with a very similar explana

tion is that which generates the flutter of aeroplane wings, shimmy of car 

wheels, caused the Tacona-Narrows bridge to be wrecked by the wind, etc. 

The number of phenomena yielding auto-accumulation is large and the number 

of possible applications many times more so. 

Returning to the first example seems as good as to any, thus we may 

describe briefly a double pendulum of W. Froude relying upon the works of 
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Bogusz [lJ and Serebriakova [IJ. Let us have two joined Froude's pendula 

with equal masses m = 1 hanging from a shaft that rotates with a constant 

speed w. The dry friction of the shaft against the sleeve of the suspen

sion causes the auto-accumulation precisely according to the rules described. 

This accumulation may not only sustain the oscillations that started with 

the initial perturbation, but actually start the pendula swinging or even 

rotating - put them into periodic motion ... it all depends upon w. We 

let the angles of swing of the pendula be the generalised coordinates 

ql' q2' with the relative angular velocities w - Cr. 1 , W - Cr.2' Cr.2 - Cr.1 . 

Usually there will not be any coupling except frictional, so the restoring 

forces may be represented by the functions 

and the positive viscous damping, including the controller, successively by 

the functions uql' uCr.2' U E R +, which are linear because the damping is 

small. Further, we let the negative damping D~, D~ be symmetric and with 

only the coupling terms nonlinear, such that 

_.Q,A(W _q. ) 
I I 

nA~ (. .) 
!C 2 D q2 - ql 

- .Q,~(W - Cr.2) 
A~ 

+ .Q,2D(Cr. 2 -Cr. I ) 

where A A + 
.Q, I ' .Q,2 E R , and D ( .) is a smooth positive valued function. Then 

the motion equations are 

{ :: + uCr. 1 .Q,~(W-Cr.I) .Q,A~ (. .) + sin 0 - 2D q2 -ql ql 

.Q,~(W - Cr. 2) .Q,~(Cr.2 -Cr. I ) 
(4.3.1) 

+ uCr. 2 - + + sin q2 0 

If each of the pendula carries out a circular motion, we may say that 

the system has a solution which is periodic in ql and q2' thus in q. 
The control conditions for such a case are derived in Wazewski [5J: 

The role of control in balancing the negative damping is quite visible from 

the above, and the choice of u is essential to design. 

This particularly refers to auto-synchronism which is a phenomenon 

occurring often together with auto-accumulation, in fact, as a part of it. 

The phenomenon is now quite successfully employed in smoothing and silencing 

almost everywhere - eccentric vibrators employed in sieves, mills, conveyors, 

electronic equipment and all types of amplifiers ought to work synchronously. 

It is often auto synchronization which silences your home airconditioner or 

your washing machine. On the other hand, an uncontrolled autosynchronism 
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can produce unexpected vibrations with sizeable amplitude in various con

structural systems and thus present the designer or user with a dangerous 

surprise. 

The discovery of autosynchronism goes back to Huygens (1629-1695) who 

observed that two clocks, slightly out of synchronism when fixed on a wall, 

tend to run at the same speed when hung on a thin wooden board. A similar 

observation in acoustics was made by Rayleigh who experimented on two 

organ pipes of slightly different frequencies coupled through a resonator. 

More than two centuries elapsed since Huygens, before synchronism was 

discovered in electric circuits by E.V. Appleton (1922). Van der Pol (1927) 

followed with the more detailed study of the phenomenon in terms of the 

normal form of differential equations. The present literature is quite 

vast as the phenomenon is one of the best known among other nonlinear 

phenomena. Minorsky [2J, of all researchers so far, made the most signifi

cant contribution to the topic. 

To illustrate the self-sustained vibrations case, we shall take the 

example of an aircraft wing flutter. We begin, following Kauderer [lJ, 

with a reduced case represented by a single (resultant) OOF laboratory 

model of the noncircular (rectangular) plate shown in Fig. 4.22 between 

linear springs, with the resultant elasticity coefficient k and subject 

to an airflow with the controlled velocity Va The plate moves vertically, 

with the deflection q(t) measured from its equilibrium position obtained 

by the springs in unstressed mode, and with the velocity V(t). Then the 

velocity of the air flow relative to the motion is v = Va + V. It gen

erates the aerodynamic forces of lift L t Psv 2cL (a) , and drag 

o = } Psv2co (a) marked in Fig. 4.22, with the air density p, area of the 

o 

-v 

L 

Fig. 4.22 
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plate Sand CL (a) , CD (a) being lift and drag coefficients, usually 

smooth so that a power series can be developed, and for small angles of 

attack a reduced to linear form. In most of the practical cases, the 

aerodynamic forces are given experimentally. 

From Fig. 4.22 it is seen that 

The forces mapped on the line of motion become 

whence the motion equation is 

mV ~~ = -kq + 1- PSV~ 11 + (V/V o) 2 [CL - (V/VO)CDJ 

where m is the mass of the plate. Denoting kim ~ w2 

to obtain the characteristics, we have 

dv r---:---;---:-
V - - d/l + (v/v ) 2 [CL - (V/VO)CDJ - kq dq 0 

o . 

(4.3.2) 

(pSV~/2m) /:, d 

(4.3.3) 

Observe that the damping characteristic depends only on the velocity 

V = q, and is partially negative, that is, it can generate accumulation 

of energy for some values of V. The characteristic is usually given by 

experimental data wherefrom we know that the values concerned appear in the 

interval -O.4SV o $ V $ O.4SV o We conclude that the origin is unstable 

and thus we may expect a periodic limit cycle about it. Such a },+ must 

intersect the lines V ±O.4SVo which bound the conservative region H
above from the region of accumulation H+ below the cycle, see section 4.1. 

OWing to the fact that the characteristics are odd functions, the regions 

H+ , H- should be symmetric with respect to the origin. 

The realistic flutter case works on a similar principle to that used 

for the above experimental stand, but must have at least two DOF to produce 

the elastic and inertial coupling which constitute the wind-motor generating 

the auto-accumulation. We usually see the wing as a hinged-free beam, 

hinged at the fuselage side and allowed the two DOF required, namely 

lateral vibration of the stiffness axis and torsional vibrations about that 

axis, see Fig. 4.23. 

At steady state motion, which is of interest, the airplane proceeds 

with a constant subsonic speed v, which can be controlled, with a given 

angle of attack a and a given wing setting angle e. OWing to the 

symmetry of the profile and other less significant factors, any initial 
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Fig. 4.23 

torsional disturbance SO,ao ~ 0 from an equilibrium may produce the said 

vibrations which in specific circumstances could have an auto-accumulative 

character. 

The corresponding block scheme in Fig. 4.24 is a specified case 'of 

that in Fig. 4.20. The plant, which is now the wing, is presented in terms 

of its two DOF with the aerodynamic coupling always present and the inertial 

coupling often appearing. 

Similarly as in the previous laboratory eXperiment, the source is the 

wind flowing about the profile and the control program is determined by 

the aerodynamic actions, strongly nonlinear functions of the angle of 

attack and speed. The latter is considered the control variable, entering 

the program implicitly. Indeed, given a specific flight path in Oxyz and 

with a certain amount of positive damping supplied by the structure itself 

(following suitable design of characteristics), the control of auto

accumulation (that is, flutter) will depend upon the speed v = const kept 

during the flight, away from some critical value that may force the system 

trajectories out of an energy cup where the damping provides enough shelter 

against auto-accumulation. For details, we refer the reader to Den Hartog 

[lJ, Bednarz-Giergiel [lJ and Skowronski [32J. 

Fig. 4.24 
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4.4 NONAUTONOMOUS STEADY STATES 

Let us now make a few comments on how the objectives of Section, 4.1 

can be augmented to the case of nonautonomous systems (2.2.6) " and thus 

its selector equation (2.2.5) " which must be used when the structure is 

subject to external perturbations R(x,t,w), related to time explicitly. 

The main difference between the trajectories of autonomous systems 

considered before and the motions of the nonautonomous systems refers to 

initial conditions, namely the fact that the motions start from (XO,t o ) 

E ~ x R and are unique only in this set, while the trajectories have the 

same uniqueness property in 6, that is, starting from xO E 6 do not 

cross for arbitrary to E R. However, as long as various notions, specify

ing objectives for nonautonomous systems in indefinite time, can be con

sidered t o- uniform, the geometric extension of the corresponding sets from 

6 to 6 x R remains cylindrical and thus these notions may still be dis

cussed in 6. Indeed, let ~ (x o ,R) be the t o- family of motions 
- 0 
<P (x , to ,R) projected from 6 x R into 6, and let ~C c ~ be any set to 

be intersected at an arbitrary t E R. We have [~(xo ,R) x RJ n (6C x R) 

= [(ji (xo ,R) n 6 CJ x R which makes ~ (x o ,R) n 6c 'f <p necessary and 

sufficient for such intersection in 6 x R 

We have already defined in a similar way the equilibria of (2.2.5)' 

and its steady state sets. In the same manner, definition (4.1.1) of the 

limit set holds for (2.2.5)' together with the conclusions which follow, 

including that of the closure of a trajectory - this time a motion: 

We may illustrate the case with Example 4.1.1. Suppose the variable e is 

not measured in angular units but in time, then Fig. 4.2 may be redrawn as 

shown in Fig. 4.25. 

'-------- X ,=-__ ~=:-__ ..:..-____ r = 5 

~ 
I-------------=----X : r = 2 

Fig. 4.25 
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h 1 1 h I h" d T e E- eve s B' B have alrea y been discussed for a ngnautonomous 

system in Section 3.3, together with the corresponding dissipative and 

accumulative controllers. They form cylindrical surfaces in ~ x R. The 

invariant and minimal invariant sets M now become such sets M of Section 

3.3. By analogy we also have the maximal invariant set M ~ M x:R, with 

Proposi tion 4.1.1 applicable without changing the choice of V ( .) , since 

our do not depend explicitly upon t, and both the Proposition and 

Corollary 4.1.1 have been considered for objectives which are to-uniform. 

Obviously the control conditions will now be specified in terms of 

fo(x,u,w,t) instead of fo(x,u,w), which is as well, if we use the con

trollers of Section 3.3. 

For autonomous systems we did not have any general criterion for 

periodicity of the limit trajectories in higher dimensional spaces. The 

advantage of introducing a periodic perturbation R(x,w,t) is that the 

resultant steady state is also periodic, at least after some transient 

interval of time, see Yoshizawa [lJ. Moreover, periodic perturbation 

allows us to treat (2.2.5) I as a dynamical system in ~, see Skowronski 

[32J, [45J, which means the methods discussed for the autonomous case are 

directly applicable. This is also significant for numerical simulation 

allowing the use of the cell-to-cell mapping in retro-integration, applied 

before. For periodic systems it is a period-to-period map. Regions of 

attraction and real-time-attraction are now to be interpreted as those 

corresponding to periodic points of the dynamical system concerned. We 

illustrate the case with the following example adapted from Guttalu

Flashner [lJ. 

EXAMPLE 4.4.1. Consider the forced Duffing's equation 

- uX 2 - kX 1 - Sx~ + a cos wt , } (4.4.2) 
x 2 , 

where u = const = 0.2, eigenfrequency k = 0, hard-spring coefficient 

S = I, forcing amplitude a = 0.3 and perturbation frequency w = 1 • 

The system possesses two disjoint asymptotically stable attractors 

(harmonic) marked by a solid dot and "+" in Fig. 4.26, and unstable motion, 

marked "X", all with period 27T. o 

Referring now to the global study of distributing attractors, if 
!J. 

M = M(t) x:R is a stable attractor from !J.AT = !J.AT (t) x R, for each t we 

can prove the Property of Disjointness I, while the Property of Identifica-
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Fig . 4 . 26 

tion I holds for all t ~ to . On the other hand, the finite time pattern 

of real time attractors requires attention, as we may not automatically 

assume that the study in 6. suffices. 

Define now ~(to) ~ {t E JR I t ~ tB = to +TB}, to E JR. Then 6.B x JR 

is a real time attractor from 6.BO x JR in 6. x JR. Note that 6.B x FB 

does not have to be a subset of 6.BO x JR, they may even be disjoint, as 
0-0 

long as (x, to) E 6.BO x F implies <p (x , to ,~) c 6.B X JR. For any to' 

6.B x JRB and 6~ x ~ yield 

(6B X~) n (6~ x JR~) = (6.B n 6~) x (FB n ~) 

from which (6B x JRB) n (6.~ X~) = <p if and only if 6.B n 6~ = <p or 

~ n ~ <p Following the definition of real time attraction we assume 

~ n ~ 'I <p (tB I ~ tB => JRB n ~ = JRB I and tB ~ tB I => ~ I n ~ = ~ ) 
Thus disjointness of 6.B , 6.~ decides the disjointness of 6.B x ~ and 

6.~ x JR~. Since the attraction concerned is to - uniform, the above applies 

to 6.B x JR, 6.~ x JR as well. Correspondingly, we have (6.BO x JR) 

n (6.~O x JR) = (6.BO n 6.~O) x JR, and we may use the Property of Disjointness 

II in 6. equivalently for 6. x JR. Using the same argument, we may show the 

equivalent use of the Property of Embedding and the Properties of UllB , nllB 

as well as the Property of Identification II. 
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I 

Fig. 4.27 

(QUI-ULTIMATELY 
BOUNDED 

Turning now to nonautonomous conductors, given t ,tb € lR, ta:O; t b , 

let [ta , tb ] ~ lRb and consider two sets 6.B x lR, 6. a x lRb . We observe 
a' b BP a b 

here a different feature, namely (6.B XlRB) n (6.BP XRa) = (6.B n 6.BP ) x ~ nlRa) . 

It follows that, given to' (LIB X~) n (lIBP x JR~) 'I <p if and only if both 

LIB n LIB 'I <P and ~ n JR~ 'I <p. Hence the latter two conditions together 
b 

are equivalent to conducting by L'.BP x JRa , see Fig. 4.27. 

Observe that ~ 

Hence there is always a 

~ n JR~ 'I <p, and again 

depends upon to and Ut 11. (to) = JR as to € JR • 
o B 

to such that for the motion generated, we have 

the study in. 6. suffices, so that the Properties 

of Conductors apply in the nonautonomous case. 
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Chapter 5 

COLLISION AND CAPTURE 

5.1 COLLISION RELATED OBJECTIVES 

Objective properties Q related to various ways of crossing a target 

are classical but still basic, at least for systems which are already 

stabilized. Ever since its inception about 1960 when the first work 

appeared (see Kalman-Bertram [lJ, Kalman [lJ), the notion of controllability 

has been connected with reaching a target. Initially, the problem was posed 

in a rather simplified and applicationally rigid form of attempting a trans

fer between two given states xO and x(tf ) E ~ under specified control. 

It later developed into the transfer between sets of initial conditions 

and specified target sets in ~, then an optimal transfer, and as such had 

been the subject for classical, linear control theory for many decades, 

starting from Kalman's presentation at the I IFAC Congress in 1960, see 

Barnett [lJ, through a wide literature continuing up to the present, too 

vast to be quoted. 

Leaving aside also the linearized models (perburbed linear), mainly by 

Aronsson [lJ, Dauer [lJ-[4J, Lukas [lJ,[2J, Davison-Silverman-Varayia [lJ, 

Lobry [lJ, Mirza-Womack [lJ, Nguen [lJ, Klamka [lJ,[2J, and a few others, 

we refer to the results without an attempt to linearize, like Markus [lJ, 

Cheprasov [1 J, Gershwin-Jacobson [1], Liu-Leake [1 J, Heinen-Wu [1 J, and later 

the Leitmann school, Sticht-Vincent-Schultz [lJ, Grantham-Vincent [lJ, 

Vincent-Skowronski [lJ, Stonier [lJ, Skowronski-Vincent [lJ, Skowronski 

[29J,[38J,[44J,[45J. 

Without underestimating the mentioned objective of transfer between 
some initial states and a target, the present demands on control theory 
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require much more. The conventional concepts of collision (meeting a 

target) or avoidance (not meeting it at all) must be looked at in a more 

flexible manner. Say, collision with or without penetration of the target, 

with or without permanent capture in such a target, perhaps with rendezvous 

only, and if so, before or after a stipulated time or ultimate capture 

after stipulated time. There is obviously another set of such objectives 

for avoidance, see Chapter 7. The objectives mentioned are modular, that 

is, one may be able to form real complex objectives using them as compon

ents. Let us start with the most basic concept, namely collision. 

It will be assumed that the particular scenario in Cartesian space 

Oxyz has been transformed to the state space variables, see Section 1.6, 

and thus we deal with the state space targets T = TxT. c fj.. Let T 
q q 

be a given set in /::, which is bounded and closed (that is, compact) but not 

necessarily connected. It might be made to move in time, and then con

sidered T (t) x R in /::, x R, or made stationary, back as T, by redefining 

the state into relative variables measuring the instantaneous distance 

p(x(t) ,T(t», t ~ to • In the latter sense taking a stationary target 

serves the moving target scenarios as well. 

Modelling in relative coordinates somehow obscures the physical meaning 

of the state representation but has a distinctive advantage of reducing the 

dimensions of the state space and thus making the computation faster. The 

latter is of particular importance for on-line computation on small and 

thus slow computers on board vehicles, for robots working in difficult 

conditions (space, under water), etc., where fast computation may be vital. 

Moreover, the relative coordinates approach may be necessary anyway, say, 

discussing coordination of several mechanical structures like aircraft or 

spacecraft keeping formation, coordination of robotic arms, etc., in general 

for all tracking problems. 

For directly chosen state variables, the target may also mean either 

a curve or a trajectory of a system in /::, as well as a family of such curves 

or trajectories. We shall then talk of stipulated path t~aaking or model 

~efe~enae following. This can be seen as being alternative to the relative 

variables method of control. 

The classical notion of aollision is understood as at least an 

instantaneous contact of a motion of (2.2.6) I with T. More formally, we 

express it by the following definition. 
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DEFINITION 5.1.1. Given T and (XO,tO)E/':,.XJR, amotion - -0 + ¢(x ,to,JR ) 

of (2.2.6)' collides with T if and only if 

(5.1.1) 

This means that there is some, generally unspecified, constant T < co 
c 

such that for t = t + T we have c 0 c 

(5.1.2) 

When T 
c 

is stipulated a-priori, we say that the motion collides at 

stipulated time. 

Considering the collision of Definition 5.1.1 or its stipulated time 

version to be the objective property Q discussed in section 3.1, we have 

the controllability and strong controllability for such collisions specified 

by Definitions 3.1.4 and 3.1.5, respectively, together with the notion of 

regions of such controllabilities. Let the region of controllability be 

denoted by /':,.c and of strong controllability by /':,.C. Note that the 

relations (3.1.14) - (3.1.16) hold for collision as well. The regions 

corresponding to collision at stipulated time will be denoted /':,.c (Tc) ,t'C(Tc ) 

Let us make here a blanket assumption for all the future text that 

any newly defined modular subobjective property will generate controllabil

ities specified by Definitions 3.1.4, 3.1.5 with all their following notions. 

To save space, this statement will not be repeated each time we introduce 

such subobjectives, unless we would like to indicate exceptions to the rule. 

Obviously each time the regions will have different subscripts related to 

the specified Q and thus notation will be given, as well as any other 

properties related specifically to the case concerned. For instance, for 

collision it must be obviously stated that, by definition, the target 

belongs to all the regions trivially: T c 6C c 6c ' 

In practical situations, we often come across the demand of collision 

before or after stipulated time, rather than at the given time instant, the 

latter being difficult to achieve. 

DEFINITION 5.1.2. Given T, T~ < co and (x o , to) E /':,. x JR, a motion 

¢(xo ,to,JR+) of (2.2.6)' collides with T before the time < if for some 

t' ~ t = t + T+ we have 
c 0 c 

- -0 _c 
¢(x ,to,t') = x E T . (5.1.3) 
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Fig. 5.1 

Fig. 5.2 

The regions of controllability are denoted ~c(T;) and ~C(T;). We 

shall concentrate on some features of the latter, though the same conclus

ions are applied to the former. The strong controllability before T+ 
c 

implies the strong controllability for collision, hence we have 

(5.1.4) 

Each motion collides with T during a time interval which is smaller 
+ or equal to the upper bound T c which is common for all motions from 

~C(T~), see Fig. 5.1. In this sense, the boundary a~c(T~) forms a 

surface in ~c which can be called isochronal. It can be seen from the 

Fig. 5.1 that with the same rate of attraction to T x R the surface 

a~c(T~) is cylindrical along the t-axis. Indeed if a motion with the same 

rate of attraction were to start above the xC-level indicated, it would 

come to aT later than after T +. The cylindrical shape in ~ x R means 
c 

that this surface projected into ~ c ~ C RN forms an isoahronal level c 
in this set, see Fig. 5.2. The isochronal levels are nested about T, 

that is, they enclose each other successively with growing T+. 
c 
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Indeed, by the same argument, it follows from Definition 3.1.4 that 

for any pair T' Til 
C' C 

such that T" < T' 
c c' 

(5.1.5) 

For stipulated p(.) , the strong recovery region for our collision before 

T+ - + 
is denoted 6C (P,Tc) and is measured by (3.1.12) adjusted to this 

c 
set. Moreover, 

(5.1.6) 

Another subobjective is the ultimate collision, that is, collision 

not before but after stipulated 

definition. 

T < 00 
c 

We shall use the following 

T -0 A DEFINITION 5.1.3. Given , Tc < 00 and (x ,to) E D x JR, a motion 

¢(xO,to,JR+) of (2.2.6)' collides ultimately with T after Tc' if and only 

if for some t' ~ t = t + T we have 
c ° c 

- -0 -c <P(x ,to,t') = x E T (5.1.7) 

The corresponding regions of controllability are denoted 

6 (T-) ,6C (T-) and recovery regions by 6 ( ,T-) , 6C (-,Tc-). The proper-
c c c c c 

ties (3.1.13) - (3.1.17) and (5.1.4) - (5.1.7) apply after obvious adjustment, 

for instance (5.1.5) requires reversed inclusion. 

If we now want the collision at a stipulated instant of time, we must 

have T+ 
c 

T 
c 

Tc and apply (5.1.2). 

Collision before T + may apply successively to various targets T. , 
c J 

j 1,2, ... , generating a sequence of subobjectives, usually ending with 

ultimate collision. We then talk about sequential collision 
+ + 

TCl ,TC2 '··· ,Tc 

It is often of obvious practical interest to exclude cases when the 

motion can bounce off the boundary aT. Then we demand penetration of T 

rather than collision with it. The problem is the same as collision with 

the interior, an open set int T • 

DEFINITION 5.1.4. Given T, and a motion 

of (2.2.6)' penetrates T, if and only if 

- -0 + <P(x ,to,JR ) n int T ¥ <P • (5.1.8) 
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Similarly as in collision, it means that there is 

such that for tp = to + Tp' we have 

:I: -0 ) -p T o/(x ,to,tp = x € int , 

T < 00 
p (unspecified) 

(5.1.9) 

and if the constant Tp is stipulated, we consider the penetration at 

stipulated Tp' see Fig. 5.3. 

Fig. 5.3 

The controllability regions are denoted f1p' f1p and for the case of 

stipulated time f1p (Tp)' f1p (Tp). The properties (3.1.13) - (3.1.17) and 

(5.1.4) hold here as well. Moreover, since penetration implies collision, 

we also have 

b. c b. b.p c b.c p c 
(5.1.10) 

and for the same Tp' 

b. p(Tp) c b. b.p(Tp) c b. 
P P 

(5.1.11) 

Identically as for collision, we may + introduce penetration before Tp and 

after T- (ultimate) The discussion of b.p(T;>, b.p(T;> is the same as 
AC(PTc+) • for u outlined above. Penetration is simply a collision with an 

open set. Considering the sequential collision, particular subobjectives 

may appear with or without penetration. In general, when discussing an 

objective Q, we may combine these two modular properties or separate them, 

and obviously use Definitions 3.1.4, 3.1.5 for the controllabilities of the 

resulting objective. Let us look closely at the case of collision without 

penetration or, which is the same, aollision with rejeation. To attain such 

an objective, a motion of (2.2.6) I would have to satisfy the collision 

(5.1.3) but contradict the penetration (5.1.8), that is, to satisfy 
A; -0 + ",(x ,to,R ) n int T = <P 

f1p It is obviously the region of strong controll-

ability for rejected collision. Observe that any motion leaving Cf1p would 

have to do the impossible, miss T or penetrate it. Hence we obtain the 

following. 
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PROPERTY 5.1.1. The region C""'p is positively strongly invariant under 

P(·) 

Then we also have 

PROPERTY 5.1.2. T c ~P if and only if C""'p = ¢ . 

Indeed, no motion from C""'p can reach T without penetration, which 

proves necessity. Sufficiency is obvious as ""'C - ""'P = ¢ implies 

""'C c""'p and we have T c ~C 

Now let aRT ~ aT n C""'p be the rejecting part of the target boundary 

aT termed non-useable. Immediately we obtain the contra positive to the 

above sufficiency: 

and conclude the obvious that with rejected collision, not all of the 

boundary aT is used for penetration. It also means that aRT c C"'" P 
the other hand, int T c ~P whence int T n C~P = ¢ and we have 

PROPERTY 5.1. 4. There is no protruding of T into C""'p except for aT, 

cf. Fig. 5.4. 

Fi(J. 5.5 

Thus we may have two cases: 

(i) non-protruding, aRT = ¢ , that is, all of aT is 

useable for penetration; 

(H) protruding, aRT 'I- ¢ , that is, some part of aT is 

non-useable. 

On 

In the first case, by Property 5.1.2, we have c""'p = ¢, that is, there is 

no rejected reaching whence all reaching motions penetrate. 
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Let us consider now the protruding case (ii) with aRT oj cp, see 

Fig. 5.5. Suppose that 6p is closed, that is, Clip is "open below", then 

aRT c int Clip and there may be a point internal to both lip and Clip' 

which contradicts the obvious int T c 6p . Hence we have 

PROPERTY 5.1.5. C6p oj cP implies that lip is open. 

Granted that lip is open and that only aT can have common points 

with Clip' it follows that only aT of the entire T can protrude into the 

closed Clip. Hence 

PROPERTY 5.1.6. 

In turn, by definition, rejected collision implies that all motions 

from Clip terminate in aRT and thus, by the above, we have 

PROPERTY 5.1. 7 . Motions from closed Clip oj cp terminate in allp and 

through this set in aRT 

This means that a6p is strongly positively invariant under P(x,t) 

generating the rejected collision. 

The next modular subobjective property, often met with in control 

scenarios, is capture in the target T, and rendezvous with T which is a 

temporary capture. These two subobjectives serve much better than collision 

alone in all tracking and path or model following situations. It might be 

worth mentioning here that in some control theory presentations, the word 

capture is used in the sense of our collision. Our meaning of capture is 

a permanent holding in T after a specific time, again possibly stipulated. 

In the above sense, we may obviously have collision with or without 

capture. Controllability for capture in Liapunov terms was introduced in 

Vincent-Skowronski [lJ, and we shall refer to this work. The study on 

rendezvous will represent a modified version of that in Skowronski [38J. 

-0 A DEFINITION 5.1. 5 • Given the target T, and (x, to) E u x JR , some motion 
- 0 + cp (x , to,JR) is captured in T if and only if there is TC < 00 such that 

(5.1.12) 

The same motion performs a rendezvous with T if and only if there is 

TZ ~ [tzl ,tz2 J c R, tZ2 < 00 such that 
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Fig. 5.6 

) (5.1.13) 

When T(,TZ are stipulated, we refer to capture after T(, and rendezvous 

during Tz ' respectively, see Fig. 5.6. 

For tZ2 -+ 00, rendezvous becomes capture, and for 

becomes collision. 

it 

EXAMPLE 5.1.1. Consider a wheel of a railroad car passing over a low spot 

on the rail, as shown in Fig. 5.7. As the wheel traverses the low spot, 

the vertical displacement of the wheel is a combination of the variable 

depth of the low spot and the additional deflection of the rail due to the 

weight of the wheel interacting with the low spot. If we let s = f(£) 

represent the variable depth of the low spot and q(t) the additional ver

tical deflection of the rail as the wheel passes by, we can write the motion 

equation of the wheel in the vertical direction as 

d 2 (q + s) 
m + kq 0, 

dt 2 

Fig. 5.? 
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where m is the mass of the wheel and k is the vertical load that produces 

a unit deflection (coefficient of elasticity). Using the chain rule of 

differentiation, 5 can be written in terms of the speed V of the train, 

producing 

or 

mq + kq 

Defining the shape of the low spot in terms of a simplified Fourier series 

we have 

WI 2rrJ/, 
s(J/,) = - (1 + cos --) 

2 w 2 

with the uncertain length of the low spot w2 and uncertain depth of that 

spot at its midpoint WI' Remembering that J/, = vt, we can write the 

motion equations as 

•• 2 WI 4rr2 
mq + kq = mV 2""' ---2 cos (2rrvt/w 2 ) 

(w2 ) 
(5.1.14) 

which represents forced vibrations, that is, the track is forced to vibrate 

by the wheel passing over the low spot. Given initial conditions 

q(O) = 0, q(O) = 0, the motion equation has a solution 

q (t) = - (1 _ w
2
/VL) (cos (2rrvt/w2 ) - cos (2rrt/L» (5.1.15) 

with the period L. It follows that the additional vertical deflection q 

is directly proportional to the depth of the spot WI' Moreover, it also 

depends upon the ratio W2/VL which ought to be separately analysed. The 

period L of the vibrations is related to the radius of the wheel, which 

is thus a parameter of the system. The deflection increases with the ratio 
T of wheel size to length of the low spot. The vector (wI ,w2 ) = W € W 

gives the uncertainty under which the system operates, while the speed V 

of the train, appearing in both the ratio w2/VL and in the bracket, is 

the control variable programmed by the driver of the train. He wants to 

avoid an excessive amplitude of the deflection-vibrations, aapturing q(t) 

within specific bounds which are safe and represent the target concerned: 

~in :s; q(t) :s; ~ax • Granted that the set W is given by statistical 

evidence, taking the most dangerous w* we may calculate a sui table V from 

(5.1.15) thus getting the robust program P(·) for the driver. Such a 

direct calculation is possible since the equation (5.1.14) has an exact 

solution. In a more general case, the program would have to come from the 

Liapunov formalism without solving the equation, see the next section. 
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OWing to the shape of (5.1.15) the program obtained from it always theor

etically exists, but we must also check the obtained values of V against 

the possibilities of the motor of the train. 

It may occur that it is not necessary to control the system for an 

indefinite duration after the impact of hitting the low spot hole. It all 

depends on how often we expect the low spots and how many of them exist. 

Calculating (5.1.15) over a specific duration Tz subject to the above 

discussion produces the rendezvous during TZ generated by the same con-

troller. o 

The regions for controllability and strong controllability for capture 

and rendezvous will be denoted by ~~'~c and ~z'~z respectively with 

obvious adjustment when referring to stipulated time intervals TC,Tz • 

Clearly, capture is an ultimate rendezvous with T .... 00 Z . Moreover both, 

capture and rendezvous, imply collision. Thus we have 

(5.1.16) 

and the same inclusions for corresponding regions with stipulated time 

intervals. From (5.1.16) we conclude that ~c n T of <P, but not necessarily 

T c ~C. Hence, if the system is strongly controllable for collision with 

capture in T, then there is a robust P (.) such that for all w (.) the 

motions are in T after some time interval. However, it does not follow 

that the system state can be maintained in an arbitrary subset of T. It 

does not follow either that the state can be maintained even in a given 

subset of T n ~C' since for a certain point of this set it may be possible 

that the state passes through the point but that there is a w ( .) such that 

no P ( • ) is able to return the state to a neighborhood of the point. How

ever, it does follow that there is at least one non empty subset of T 

located in T n ~C which is positively strongly invariant under P(·) 

Any such subset is called a aapturing subtarget T C in T, and there may 

exist an indefinite number of them, see Fig. 5.6. Thus, in practical terms 

we refer to a given aarulidate set TC which is required to be such a sub

target, and must be confirmed by some sufficient conditions. Note, however, 

that for fixed T C the choice of T C affects the size of ~C' see Section 

5.2. 

The concept of strong controllability for collision with capture, and 

robust controllers in order to achieve it, using Liapunov formalism, were 

developed in Skowronski [27J,[29J, and Skowronski-Vincent [lJ. Since cap

ture implies collision, there is no need to consider collision with capture 
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as a combined objective unless one has an opponent who can deny capture 

but not necessarily collision. The uncertainty w can play the role of 

such an opponent. The above cited investigations give necessary and 

sufficient conditions for strong controllability for capture, including 

collision, but if the necessary conditions cannot be satisfied, offer the 

flexible alternative that collision can be achieved even if, due to the 

opposing uncertainties, capture cannot. In particular, the uncertain 

perturbations may deny capture (collision without capture) or they may be 

capable of driving the motion out of T in finite time and keeping it out 

(collision with escape) no matter what the controller does. Such an escape 

leaves us with rendezvous for the time duration, which becomes shorter as 

the option becomes stronger. 

EXAMPLE 5.1.2. Let us consider a single point-mass system with the kine

matics defined by 

q = u cos q + w sin q (5.1.17) 

with u E [-l,lJ, w E [-l,lJ, and the target T: ql = 0, see Fig. 5.8. 

Fig. 5.8 

The objective is to collide with T, 

possibly with capture. For 

qO E [0,TI/4) the robust control is 

achieved with u = -1 yielding 

q(t) < 0 The latter implies that 

for any point in this interval the 

system is pushed towards 0 no matter 

what the uncertainty w does, even if 

it does the worst, that is, uses 

w = 1. When q = 0 is passed, the 

collision is achieved, and if we had wanted the collision only, we let the 

system be free: u = 0, which makes the trajectory reach q = -TI under 

the opposition w = 1 still attempting to push the point-mass away from 

the target. In fact, such control is convenient, if we want the sequential 

collision with T, achievable from q = -TI by pushing the mass further 

down to q = 0 The story is different if we wanted capture in T. Then 

after colliding with T the first time, we would switch to u = 1 which 

generates q(t) > 0 thus stopping the mass at q 0 or making it to 

return there from any ° E (-TI/4, OJ q against w - 1 For qO < -TI/4 

we are not able to attain the latter even with u - 1 The uncertainty 

wins, making capture impossible, but leaving us with the option of sequen

tial collisions mentioned before. The strong region for capture is thus 

224 



www.manaraa.com

!:'c: -TI/4 ~ q ~ TI/4 while the strong region for collision is the whole 

q-axis, cf. (5.1.16). 

The above example illustrates also the role of the weak versus strong 

modes of control. As we recall from Section 3.1 the weak mode, that is, 

controllability secures the objective with the "cooperation" of uncertainty, 

meaning that it is possible to select a pair u,w which generates Q, in 

our case collision with capture in T: q = 0 Indeed, in the above 

example, the choice of such a pair is possible for both collision and cap

ture along with all q so the controllability is complete, and we are free 

to search for the robust controllers, as was done in the first part of the 

example. o 

5.2 OPTIMAL CONTROLLABILITY 

Suppose the system (2.2.6) I is strongly controllable at (xO,t o) 

E !:, X]R. for Q and moves along some of the motions of K (x o , to) Let us 

introduce a functional ~(.) which assigns a unique real number to such a 

motion. The number will be called the cost of the transfer from 

to ¢(x o ,to,tf ) while achieving Q and it must be consistent with Q during 

the time concerned for the functional to be called a (quantitative) per

formance index. The cost will be assumed dependent upon the corresponding 

robust P(·) and possibly t f . Although t f must exist for each ¢ (.) 

concerned, it may not be specified. Then we delete it from under the 

bracket, writing ~(xO,to'¢(')'P), The cost is identified at some event 

(5.2.1) -0 0--
0 (x ,to) : (x ,to,¢(·),P(.),w(.),to ) = 

for all admissible P(.) , and all ~( .) E K -0 
(x '\J) , _0 

x ;i;(- -0 ) = 'I' u,x ,to,to ' 

example, the cost 

of collision is smaller the closer we are to a target and zero at the tar

get. The cost of avoidance behaves in the opposite manner. The cost is 

additive along the motion. For a more detailed and very illustrative 

description of the above concepts, we recommend Leitmann [8J. 

the to being either to or t f depending upon Q. For 

The function ~(xO,to'¢(')'P,w(.),·) : t + ~(t) E]R. is called the 

cost flow, and it plays the same role in optimisation as the energy flow 

in qualitative behavior. It is assumed to be C1 and written ~(u,xO,to") 

or even ~ (.) when the initial state and time are obvious or irrelevant. 

A qualitative strong controllability with some adjoint quantitative objec

tive will consist of two problems. 
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Problem 1. Given (xo , to) E /::, x R, seaure the strong aontroUability 

for Q and then among winning programs firui P * ( 0 ) suah that 

I,1(XO,t o '<P(o),P*(o),w(o» ::; min max inf l,1(xO,t o'<P(o),w(o» 
I' w(o) <P(o) 

for aU admissible P(o) ,w(o) and aU <P(o) E K(xO,t o) 0 

(50202) 

The right hand side of (50202) is called the upper value of the game 

against uncertainty and denoted 1,1+ constant 0 Here we adapt the 

philosophy of the game against nature or worst-case-design, outlined in 

Section 202, according to which w aims to make it worst for us, that is, 

attempts to maximize our cost while we try to minimize ito The minimizing 

program P* is called optimal. 

The second problem reflects the reverse viewpoint of the uncertainty 

which aims at preventing our goalo 

Problem 20 Given (XO,t o) E /::, XlR, the unaertainty w wants to 

aontradiat strong aontroUability for Q and if that is not possible, at 

least use w* ( 0 ) suah that 

max min 
w(o) I' 

for aU admissible P(o),w(o) and aU <P(o) E K(xO,t o) 0 

Here the right hand side of (5 0203) is a constant 1,1- and is called 

the lower value of the game against uncertainty 0 Again w* ( 0) is called 

optimal for the uncertaintyo If 1,1- 1,1+ , we say that there exists a 

Game Value 1,1*(XO,to) = 1,1 - 1,1+ 0 Let us write l,1(xo ,to ,P( 0) ,w( 0» for = 
the cost, to acknowledge the fact that for each pair P(o) ,w(o) , we admit 

many motions ~(u,xO,to'o) E K(xO,t o) , each generating a cost, possibly 

differento The pair p*(o),w*(o) such that the cost l,1(xO,t o'P*(o),w*(o» 

= 1,1* (xO,t o) is called optimal and so are the corresponding motions from 

some K*(xO,t o) Note that all the values l,1(xO,t o 'P*(o),w*(o» must be 

equal, for given 

PROPERTY 5 02010 

there are P* (0) 

A game against unaertainty has the value, if and only if 

and w* ( 0) such that given (xo , to) , 

I,1(XO,t o,P*(o),w(t» ::; I,1(XO,t o,P*(o),w*(t» ::; l,1(xO,t o'P(o),w*(o» 

(50204) 
for aU P(o) and w(o) 0 
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The proof follows immediately from the fact that in view of (5.2.2), 

(5.2.3), ~- ~+ implies (5.2.4). The converse holds since always 

min max ~ (p ( . ) ,w ( . )) :<: max min ~ (p ( . ) ,w ( • )). The condition (5. 2 .4) is 

called saddle condition, and is frequently used to determine the optimal 

program, in a similar way to (5.2.2) of Corollary 3.2.2. The game value 

~*(xO,to) = ~(xO,to'P*(·),w*(.)) is unique, that is, the ~*'s along all 

$(.) 's are equal. 

DEFINITION 5.2.1. A system (2.2.6)' is optimally controllable at (xO,t o) 

for Q if and only if it is controllable for Q there and the corresponding 

P(.) ,w(·) are optimal. Then x O is optimally controllable for Q and 

~q denotes the region of such contr~llability. 

DEFINITION 5.2.2. A system (2.2.6)' is optimally strongly controllable at 

(x O ,to) for Q if and only if it is strongly controllable at this point 

for Q and among the winning P ( . ) there is P* ( • ) such that combined with 

some w* (.) they form an optimal pair. Then xO is optimally strongly con

trollable for Q and ~Q is the corresponding region. 

The remaining concepts follow the pattern in Section 3.1. Note that 

optimal strong controllability solves Problem 1. On the other hand, the 

optimal controllability for the contradiction of Q, denoted f! makes the 

strong controllability for Q impossible, thus solving Problem 2 in full, 

rather than in its optimizing part only. 

Definitions 5.2.1 and 5.2.2 yield 

PROPERTY 5.2.2. ~* c !'J. 
q q 

Let us investigate the necessary conditions. We said that the cost 

flow plays the correspondent role to the energy flow. To show it, we need 

a cost surface L: Xo = ~*(x,t) in the space RN+2 of vectors (X,t) , 

where x = (xO,x1, .•. ,xN)T, cf. Fig. 5.9. 

We let ~*(x,t) be a C1-function, single sheeted due to the property 

that the value of the game is unique. It is often called the game 

potential, cf. Krassovski-subbotin [lJ, forming a reference frame for a 

conflict as much as the energy surface does for the qualitative control. 

Similarly to the energy, we form a family of levels: L*(C) : ~*(x,t) 

constant = c, which, when projected isometrically onto ~ x lR, produce 

a continuous family of surfaces S c filling up ~ x lR, ordered by the 
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parameter c. The motions cross the iso-cost levels exactly the same way 

as they crossed the constant-energy levels EC in Sections 2.3, 2.4. 

Fig. 5.9 

Let the investigated slice of L* be regular (no extremal points) and 

such that, given Sc' 

sets 

EXT 1.'* (x,t) > c 

INT 1.'* (x,t) < c 

As L* is smooth, so is Sc 

separates its neighborhood into two disjoint 

(5.2.5) 

(5.2.6) 

and at any (x,t) E there is a gradient S c 

V t 1.'* (x,t) t::. 
x, 

[ alJ* alJ* alJ* ) 
at ' at ' •.• 'axN t- 0 

directed towards EXT. Consider now the point (x,t) on a motion with the 

selector f (x, u, w, t) == 0 and let this point be regular on S c' see Fig. 

5.10 and compare Fig. 2.11. There obviously will be K(x,t) of such 

motions through the same point (x,t). From (5.2.4) we have at this point 

INT 

Fig. 5.10 

228 

lJ(x,t,i\(.),w(.» S; 1.'* (x,t) , 

(5.2.7) 

for all w(·) , and 

lJ(x,t,P(·),w*(.» ~ 1J*(x,t) , 

(5.2.8) 

for all P(·) , cf. (4.1.9), (4.1.10). 

From (5.2.7) we conclude that no motion 

with the selector f(x,u*,w,t) may 

penetrate EXT no matter which w ( .) is 

used. This contradicts ~*(t) > 0 

along such motions, thus yielding 

~* (t) s; 0, that is, 
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(5.2.9) 

In turn, from (5.2.8) we conclude 

that no motion with f(x,u,w*,t) may penetrate INT no matter which P(·) 

is used, yielding 

(5.2.10) 

for all U E P(x,t) It follows that the conditions (5.2.9), (5.2.10) 

with the above The surface S 
c 

are necessary for the saddle (5.2.4). 

properties has been called semipermeable by Isaacs [IJ. We shall call it 

cost-nonpermeable, for reasons which will become clear later, cf. Defini

tion 3.1.3 and Section 8.4. There obviously may be many such surfaces 

in !::,.. 

Further implications lead to the following three cases. 

1. Motions with selectors f(x,u*,w,t) enter INT, possibly with sliding 

upon Sc' see y ~ 90° in Fig. 5.10. We call (x,t) an entry point with 

contact, or if y > 90° strict entry. Then the motions are cost 

dissipative or strictly dissipative, respectively, which is the objective 

of our control. 

2. Motions with selectors f(x,u,W*,t) leave INT possibly with sliding 

upon Sc' see ° y :<:; 90 • Then we call our point (x,t) an exit point with 

contact, or if y < 90° strict exit. The latter means that the motions 

are cost accumulative as desired by the uncertainty opposition. 

3. The motions with selectors stay on 

(5.2.10) applied together we have, cf. (4.1.11), 

ClIJ* 
~t + min max [V_IJ*(x,t)'f(x,u,w,t)J = 0 a _ _ X 

U W 

for all U E P(x,t) , and all -
W E W, which defines 

S 
c 

S • 
c 

and with (5.2.9), 

(5.2.11) 

The surface is thus cost conservative or cost positively invariant, 

and the forces forming f(x,u*,w*,t) may be called cost potential forces. 

It is thus immediately suggestive of the fact that the equation (2.2.5) I 

with the right hand side ~(x,t) ~ f(x,t,u*,w*) should be integrable and 

that 1J*(x,t) = constant is a first integral, see Sections 3.4 and 4.1, 

so that the analogy to energy is complete. 

Suppose now that our assumption of regularity (non-zero gradient) does 

not hold in the investigated part of E* (t) , and let xe be an extremal 
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point in L* (t) , such that L* ~ L* (t) x:R. Moreover, let us take the 

cost level S {xe } XR with the gradient vanishing. It is either a 
c 

local minimum or maximum (threshold). Consider the minimum first. The 

neighborhood is a cup EXT with INT collapsed to an empty set. As the 

gradient vanishes, we work directly from (5.2.7) and (5.2.8) which obviously 

still hold. As before, motions with f(xe,u*,w,t) cannot penetrate EXT, 

but since INT = ~ the best the uncertainty can do is to force the motions 

to rest at {xe } x R, that is, 

- _e - _ 
f(x ,u*,w,t) _ 0 

t 
(5.2.12) 

for all u* € p* (i,~,t) , w € W, t € R+, which thus replaces (5.2.9) as 

a necessary condition for the minimum. By symmetric argument with EXT = ~ 
we obtain 

for all u € P(x,X,t) all P ( .) and w € W, as a necessary condition 
-e -for x being a local maximum. As a result, the motions with f(i,u*,w*,t) 

cannot leave {ie } x R at all, whence 

- 0 
t 

is necessary for i e being an equilibrium, cf. (5.2.8). 

(5.2.13) 

Apart from the extrema xe , the surface L may have discontinuities 

in differentiability - sets of points where the gradient is not defined. 

The corresponding projection into IRN forms what Isaacs calls a singular 

surface, an (N-l)-dimensional manifold on which regular behavior of motions 

fails. These surfaces may attract, repel or be neutral as much as the 

extrema could. 

As a practical conclusion of our analogy between the energy and cost 

surfaces, we can have that if the cost is considered energy, the stabiliza

tion of Sections 3.2, 3.3 and 4.1 applies directly. When the cost is 

something else, it applies as well but must be translated into the cost 

language. Then we talk about strong cost stabilization rather than strong 

stabilization. On the other hand, when the objectives are mixed, qualita

tive and quantitative, e.g. we have both energy and other cost stabiliza

tion, the name is strong optimal stabilization. The translations are 

immediate and left to the reader. 

The necessary conditions (5.2.11) are useful in many ways, but to us 

mainly to produce semipermeable candidates for strong controllability, not 
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necessarily optimal, for various objectives - in particular capture, see 

the next section. The practical means of applying (5.2.11) is through 

the so called Pontriagin Principle, which we outline here very briefly 

for further use. 

Let us specify the cost as the integral 

v - --fo(x,t,u,w)dt (5.2.14) 

and write the cost flow as 

v - --fo(X,T,U,w)dT o , 

which in terms of the vector x see Fig. 5.9, produces 

the cost-state equations 

x (5.2.15) 

~ v-T /\ 
where f = (fo,f) , with cost-state m~tions ¢(.) in 6 x {x o} x R , 

governed by the augmented selectors f. Then (5.2.11) becomes 

where 

ClIJ* '" A 

~t + min max [VAIJ*(x,t) 'f(x,t,u,w)] 
o u w x 

V",IJ*(x,t) 
x with 

o , 

1 . 

(5.2.11) , 

Following Isaacs, we call it the Main Equation. Introduce now the vector 

n- ~ T normal to Sc and let n = (nO,n1, ... ,nN+l ) be defined by 

no = ClIJ*/Clx o 1 n i = ClIJ*/Clxi , i = 1, ... ,N, nN+l = ClIJ*/Clt. We shall 

refer to it as adjoint or costate vector. Then (5.2.11)' becomes 

min max fi.I(~,t,u,w) = 0 (5.2.16) 
ii w 

with the geometric interpretation in Fig. 5.10 and the corresponding 

discussion, see Fig. 2.11. Let us introduce now the Pontriagin's Hamil

tonian H(~,t,u,w,g) ~ g(t) '~(X,t,u,w) and rewrite (5.2.16) as 

min max H(~,t,u,w) = 0 , 
u w 

(5.2.17) 

while the selecting costate equations (5.2.15) and the so called adjoint 
'" equations producing Ii are 

X. ClH 
i 0,1, ... ,N (5.2.18) 

~ Cln. 
, 

~ 

ClH 
L~=o 

Clf. 
~ 

i 0,1, ... ,N (5.2.19) n. Clx. 
n. dX. 

, 
~ J 

~ ~ 
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The conditions (5.2.17), (5.2.18), (5.2.19) form what is known as the 

Pontriagin Min-Max Principle. When the cost is time: f~(X,t,u,w~ - 1 

all the above simplifies. Indeed, xo(t) = xo(t o) + (tf-tO)' f (l,f) 

with 

H (5.2.20) 

5.3 CONDITIONS FOR COLLISION 

There are two basic problems in controlling the system for collision

type objectives: to design a feedback controller and to define the region 

where it may successfully apply, that is, the region of both controllability 

and strong controllability. The problems are usually solved in practical 

terms by assuming reasonably justified candidates for P(·) and I1q,I1Q 

and then verifying them against some sufficient conditions for the con

trollabilities concerned. The candidates may come from an experienced 

guess of the designer or user, or from necessary conditions for the 

controllability. Controllers can also be derived from conditions which 

are both necessary and sufficient, like Corollaries in Sections 3.2, 3.3 

and 4.1. 

Let us begin with collision. First, sufficient conditions for the 

corresponding controllability of a non-truncated nonlinear system followed 

from the work by Markus [lJ already quoted in Section 3.2. Then Gershwin

Jacobson [lJ were historically the first to introduce conditions for 

controllability for stipulated time collision. Both attempts used the 

Liapunov formalism, but it is in Blaquiere-Gerard-Leitmann [lJ where the 

formalism is rigorously posed. In more practical terms, the case was 

proved by Sticht-Vincent-Schultz [IJ. Later stonier [lJ and Skowronski 

[29J gave alternative versions of these conditions. All the above dealt 

with autonomous systems without uncertainty. The perturbed uncertain 

system has been discussed by Skowronski [32J. We shall follow that line, 

beginning with conditions under which smoothness of the test function 

V(·) is not required. 

Let 110 c 11 enclosing T be the proposed candidate for a strong 

region. Denote CT f;;, 110 - T and introduce an open envelope D:::> CT and 

a function V ( . ) D x lR -+R with 
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CONDITIONS 5.3.1. The system (2.2.6) I is strongly controllable on ~o for 

collision with T, if there is P(·) defined on D and a function 

V(·) : D x R ~ R such that 

(i) V(x,t) > vT for x iT, t € JR ; 

(ii) V(X,t) for X € CT, 

(iii) for each u € P(x,t) there is a constant 
-0 -Tc(X ,to'~(·)) > 0 such that 

V[~(xo ,to,to+Tc) ,to+TcJ -v (xo ,to) $ - (v: - vT ) 

for all ~(xo ,to'·) € K(x o ,to)' (xo ,to) € CT x JR 

(5.3.2) 

As motions from x O € T collide trivially, to prove the conditions 

x O CT. Then denote t 
-c - -0 we assume € to + Tc , x = ~(x ,to,tc ) . From 

c 
(Hi) we have 

-c +-0 
V(x ,tc) + [vo -V(x ,to) J $ vT • By (H) there is a constant 

-0 > 0 such that the above becomes V(xC,t ) $ vT which by (i) a(x ,to) + a 
c 

means collision with T. 

Condition (5.3.2) means that the drop in V-level (=E-level) must be 

larger than the V-measured distance from the boundary a~o to the target 

T. The same may be more conveniently expressed in terms of V-outflux and 

values w (t) € W rather than functions, provided V (.) is smooth, see 

Skowronski [29J. Similar conditions on flux have been derived by Leipholz 

[2J and Olas [lJ. 

CONDITIONS 5.3.2. The system (2.2.6) I is strongly controllable on ~o for 

collision with T under Conditions 5.3.1 with c1-function V(·) and (5.3.2) 

replaced by 

[ av(x,t) T - ] at + I7xv(x,t) ·f(x,u,w,t) dt $ -(v+ -v ) 
o T 

(5.3.3) 

for all w € W • 

To prove this, we again take the non-trivial x O iT, and suppose 

some motion from CT x JR avoids collision. Taking V ( . ) along such a 

motion, that is, calculating the flow of V(t) , condition (i) gives 

V(~(xo ,to,t) ,t) V(x o ,to) + It V(x,L)dL > vT (5.3.4) 

to 

for all t € JR+ • As -0 V(x ,to) $ 
+ 

v 0 ' (5.3.4) yields 

233 



www.manaraa.com

(5.3.5) 

which contradicts (5.3.3) proving our hypothesis. 

If Tc is stipulated, both Conditions 5.3.1 and 5.3.2 remain the same. 

We also have the following conclusion. 

COROLLARY 5.3.1. When ~o,T are defined by v-levels: 

aT : V(x,t) = vT > 
t 

(5.3.6) 

then either (5.3.2) or (5.3.3) becomes necessary as well as sUfficient. 

Indeed, if not (5.3.3), then we have (5.3.5) wherefrom there is 

(iO,t o) E CT x R yielding V(xO,t o ) v: such that 

t 
V(x,t) = V(xO,t o) + J V(x,L)dL > vT 

to 

for all t ~ to ' contradicting collision. 

Note that specifying a~o' aT by V-levels is almost always practical. 
A A 

If (5.3.6) does not fit the required sizes of ~o,T, we use safe estimates 

taking the V-levels such that T c T, ~o :::> [;0 

are as good as our choice of V (.) . 

Obviously such estimates 

The controller for collision may be found from the following corollary 

to Conditions 5.3.2. 

COROLLARY 5.3.2. Given (x o ,to) E cT x R> if there l,.S a pair 

(u*,w*) E U x W generating motion ¢(XO,t o") such that 

t 
V(¢*(t),t) - V(xO,t o) min max J c L(x,u,w,t)dt ~ -(v+o -vT ) (5.3.7) 

u w to 

then (5.3.3) is met with u* E P(x,t) . 

For notation, see Corollary 3.2.2. The above follows by the same 

argument as Corollary 3.2.2 and the observation that the min max problem 

(5.3.7) can be seen as the extremizing problem with free terminal end for 

which there is a solution for any T < 00 • 
C 

If the calculation of (5.3.7) is inconvenient, we can use the follow

ing obvious but stronger alternative. 
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COROLLARY 5.3.3. Given (x, t) E CT x JR, if there is a pair 

(u*,w*) E U x w such that 

L(x,u*,W*,t) = min max L(x,u,w,t) 
il W 

s - (5.3.7)' 

then (5.3.3) is met with il* E P*(x,t) 

Implementation of the above conditions obviously depends upon the 

selection of V ( . ) and P ( .). Methods for obtaining V ( . ) have been 

outlined in Section 3.4. It may also be seen that a fairly general method 

for obtaining P(·) follows from the corollaries in Chapter 3 and 

Corollaries 5.3.2, 5.3.3. It has been introduced and developed by the 

Leitmann school in the Seventies. The stabilizing robust controllers in 

Examples 3.2.1, 3.2.2, cf. (3.2.25), (3.2.26), have been obtained the same 

way. The following example illustrates the case of using the Leitmann

Gutman controller. 

EXAMPLE 5.3.1. Let x iO(x) be a dynamical system with the asymptoti

cally stable equilibrium at the origin of ]RN achieved by the Liapunov 

function VO (.) taken as the energy EO (x) of the above system, with 

VVo(x)T·io(x) s -c on some 60 enclosing the origin. Suppose the system 

is perturbed by an uncertainty w E Wand must be controlled against it, 

that is, we investigate a case of the typical Leitmann system (2.2.9): 

x = iO (x) + B (x) (il + w) , 

with B (x) a continuous N x r matrix function, and using the uncertainty 

band W = {w I Ilwll s p(x)}, see (2.2.10) and Gutman-Leitmann DJ. 

Taking the same energy EO(x) as our test function V(x) , we shall satisfy 

(iii) if 
t 

'VEo (x) TB (x) (u + w) f c + 
min max s -(vo -vT ) 

u W to 

which is satisfied if 

'VEo (x) T.B (x) (u + w) 1 + 
min max S (vo-vT ) 

u w T+ 
C 

The latter condition is implied by the Leitmann-Gutman controller, briefly 

LG-controller, see Leitmann [2J, defined by 

0\ (x) 

110\ (x) II ' 
u (t) { 

-p (x) 

o , 0\ (x) 0 
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Simple calculation (see Gutman [3J, Gutman-

Palmor [lJ) shows that (5.3.12) substituted into the Liapunov derivative 

makes V(x) ~ V'EO (x)T.:E 0 (x) < 0 thus implying (iii). Note that P(·) 

defined by (5.3.12) is smooth and single valued for a t 0 but it is a 

set for a = o. It means that for the latter case Ii chooses its values 

in a set and the choice depends upon unknown w. However, as V(x) < 0 , 

a = 0 for any Ii, say Ii = 0, for a short time V ( . ) decreases. We are 

secure in our task as long as U is not switched off for too long. 0 

There is an alternative to defining P(·) from Corollary 5.3.2. It 

follows from the inverse Liapunov method proposed by Liu-Leake [lJ, see also 

Peczkowski-Liu [lJ, and is based on the following general property. 

Let y,z be two real N-vectors with y t- o. Given a scalar a, we 

have y·z = a if and only if there is a real skew symmetric N x N matrix 

C such that 

(5.3.8) 

where I is the unit matrix. The above gives an explicit but nonunique 

solution to the implicit algebraic equation z·y a, y to. When y = 0 , 

a must be zero for a solution to exist, and z is then arbitrary. Clearly 

C is not unique so it produces a class of values of z, Liu-Leake proved 

that this class is an equivalence class, so that any z is a legitimate 

representative of such a class. The relation (5.3.8) has been used by 

Skowronski [13J for design synthesis by determining f in (2.2.5) '. We may 

use it as a control condition, see Skowronski [32J. Observe that, applying 

(5.3.8) to the inner product in (5.3.3) of Conditions 5.3.2, we obtain that 

any 

f(x,u,w,t) (5.3.8) , 

considered for all w E W implies (5.3.3), thus satisfying Conditions 

5.3.2, with a free choice of the skew symmetric C. The choice generates 

an equivalence class of the above f's and thus, if u is calculated from 

(5.3.8)', an equivalence class of functions u(·) • 

EXAMPLE 5.3.2. Consider the system 

with the objective to collide with the target-strip T 
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Fig. 5.11 

shown in Fig. 5.11, starting from some 6. 0 : x? ::; 6, Ii xl • Choosing 

we obtain 18 and v T = 2 , while requiring Tc = 8 sec. 

Then (5.3.8)' yields 

wherefrom x 2 = mx 2 or m 

program is 

1 and -3x 2 - xl + U 
3 -8/x2 • Hence the control 

u = 1 s , 

with S calculated as in (3.3.8). D 

Note here that choosing P(·) either from (5.3.7)' or (5.3.8)' provides 

overkill, as what we really need for collision is only the outflux estimated 

by (5.3.3), and not a monotonically negative rate of change E(q,q) How-

ever, taking (5.3.3) directly as a control condition gives an integral 

format of the controller which is inconvenient and inaccurate (free constant 

of integration). 

The following two sets of conditions serve the case of the stipulated 

time collision. 

CONDITIONS 5.3.3. The system (2.2.6)' is strongly controllable on 6. for 

collision with T before T + , if Conditions 5.3.2 hold for 
c 

::; T+ 
c 

-0 -
Tc(X ,to'cjl(·» 

CONDITIONS 5.3.4. The system (2.2.6)' is strongly controllable on 6. 0 for 

ultimate collision in T if given Tc' Conditions 5.3.2 hold for 

Tc(iO,to'~(·» ~ T~ • 
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The above follows by obvious adjustment to the proof of Conditions 

5.3.2. The Corollaries 5.3.1, 5.3.2, 5.3.3 are immediately adjustable, and 

so are the methods for defining P(x,t) 

The conditions for penetration are obtained by slight adjustments to 

Conditions 5.3.2. 

CONDITIONS 5.3.5. The system (2.2.6) I is strongly controllable on 6 0 for 

penetration of T, if there is P(.) defined on D and a C1-function 

V ( .) : D x lR ..... lR such that 

(i) 

(ii) 

(iii) 

V(x,t) 2:: vT , for x i T , t ElR ; 

V(x,t) < + for x E CT t ElR Vo , , ; 

each u: P(x,t) there is 
-0 - > 0 yielding for E Tp(X ,to'<P(')) 

t o+ T " -f PCoV(x,t) T---- + 
at + 'V-V(x,t) 'f(x,u,w,tlJdt ~ -(v -v ) 

x 0 T 

(5.3.9) 
for all W E W . 

It follows by the same argument as for Conditions 5.3.2 but with 

(5.3.4) made a weak inequality and V(X O ,to) < v~, for the non-trivial case 

x O i int T. Corollaries 5.3.1, 5.3.2, 5.3.3 apply for penetration as well, 

and so do the stipulated time Conditions 5.3.3, 5.3.4. 

In Section 3.3 we discussed stabilization below and above some E-levels 

and controlling the motions to a specific energy cup in 6 L . However, it 

has been difficult to establish the means of reaching prescribed positions 

at a given energy level. In the case related to Fig. 3.5, paths C and D, 

we aimed at a target by switching off the dissipative controller (3.3.12) 

after a suitable E-level has been reached and then using the conservative 

controller calculated from (3.3.16) in order to travel along this E-level 

up to the desired destination. Looking for a periodic steady state, we may 

use (4.1.18). In order to get over a threshold, we had to use in turn an 

accumulative controller (3.3.17). The test function used for stabilization 
+ 

below and above some E-level is referred to as E- respectively. Assuming 

+ Vo = v o ' vT = VB the cited controllers are those obtainable from, and 

satisfying, the corollaries of our present section on collision and pene

tration, when the boundary of the target is determined by some E-level 

inside or outside a cup. 

The conditions for collision and penetration are however more generally 

applicable, as they allow us to attain a target totally located on a single 
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E-level as well. The latter, together with reaching the prescribed levels, 

makes up for what we may call maneuvering, that is, sequential colliding 

and penetrating of a sequence of prescribed targets located on a desired 

route of the system. The time intervals between these collisions and 

penetrations may obviously be stipulated. This is for instance the case 

of a so called pick-and-place robotic manipulator working between a conveyer 

and, say, a milling machine. 

When aiming at collision irrespective of energy levels or on a given 

energy level, the test function used may not necessarily be energy. It may 

for instance be a function related to a product of state variables, like 

V = xl ·x2 ·, ••• , ·xN_2 ' which for even N will be positive within a certain 

region of attraction to T enclosing 1'1 0 ' with simple partial derivatives 

dV/dXi Xl·, ... ,·xi_l·xi+l·""'·XN_2 likely to produce negative inner 

products with components of f. In practical use of the conditions for 

various types of collision and several targets, it is convenient to cover 

the area concerned by several functions V ( .) , with overlapping domains 

rather than to search for a single function covering everything, see Stal

ford [2J, Diligenski [lJ. The latter may prove very difficult to find and 

certainly will always be difficult to adjust if any need for a change 

arises. We may for instance use a sequence of functions Va (·) 

a = 1, ... , £ < 00 each defined on a subset Da of D, these subsets not 

necessarily disjoint. Then, however, we may have the problem of interface, 

particularly when smooth functions are needed and thus some "corner condi

tions" would have to be satisfied for continuity of the derivative. Take 

for instance the system 

(5.3.10) 
-UX 2 

with a target about (0,0) I d t b · t A 'n JR2 ,t n or er 0 cover an ar ~ rary 0 0 • • 

seems best to choose two test functions over two regions: for x l x 2 > 0 

use VI = x lx 2 > 0 with VI = x 2 (-ux l +wx l ) +xl (-ux 2 -wx 2 ) = -2ux l x 2 , 

and for x l x 2 < 0, use V2 = -x l x 2 > 0 with V2 = 2ux l x 2 , without diffi-

culty in interfacing the domains at Xl x 2 = 0 In other cases, however, 

such an interface may prove difficult. On the other hand, the interface 

may not be needed if the union of D 's a fills up 1'10 and if we may use the 

relaxed Conditions 5.3.1 which do not require smooth V ( .) . 

In our control for maneuvering (sequential collision and penetration) 

we may come across steady state limit sets, but they rarely are our present 

targets since, by definition, they mean capture rather than collision. 
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EXAMPLE 5.3.3. Let us continue Examples 1.1.1, 3.2.1, 3.3.1, with the 

perturbed system, cf. (3.2.19), (3.3.17), 

} (5.3.11) 

and phase-plane pattern of Fig. 5.12, redrawn from Fig. 3.7. For simulation 

purposes, let a = c = 1, b = 2.1, d e: [-l,lJ, unknown, yielding stable 

equilibria at x~ = 0, ±l.17 and unstable equilibria at x~ = ±O.85 . 

Fig. 5.12 

Following Example 3.2.1 we have at our disposal the dissipa"tive control 

program which is a modified (3.2.23) or similarly designed accumulative and 

conservative controllers. The dissipative controller is obtained from 

(3.2.21) and oh > 0 is the energy change from 

initial values to the target, the accumUlative and conservative controllers 

are obtained from (3.2.21) with 11:+ (x) ~ oh/T , and E- (x) = 0 , 
c 

respectively. Similarly to (3.2.22) we obtain for the dissipative control 

condition, see also (3.3.12): 

min 
u 

implied by the dissipative controller defined as 

min 
u 

(u sgn xl) 
{ 

l oh 
-R(t) sgn xl - xl - Ix IT 

l c 

:5: -R(t) sgn xl _ x~, IXll 

(5.3.12) 

(5.3.13) 

< f3 

where f3 const is calculated as in (3.3.13). The accumUlative control 
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condition (3.3.17) gives 

max (u sgn x 2) 
u 

oh 
<: -P (t) sgn x 2 + max (dX22) + I I 

d x 2 Tc 
(5.3.14) 

implied by the accumulative controller 

(3 , 

max 
u 

<: { -R(t) sgnx, + x~ + 

-R(t) sgn x 2 + x 2 ' 

(5.3.15) 

By the same argument, the conservative control condition follows from 

(3.3.15) or specifically (3.2.22) with c = 0 : 

min 
u 

(u sgn x 2) = -R(t) sgnx2 (5.3.16) 

and no need to introduce (3. Alternatively the controller may be obtained 

directly from (3.2.20): 

(5.3.17) 

Let us now specify two targets, Tl about the basic equilibrium and 
-e x (1.17,0) , see Fig. 5.12. For the free system u == 0 , 

R == 0 with positive damping d = 1, we would have three stable attractors 

at (0,0), (1.17,0) and (-1.17,0) with the corresponding regions of 

asymptotic stability l'.!s' l'.~s ' l'.~s indicated in Fig. 5.12, and separated 

by the damped separatrices. For the perturbed system R(t) ~ 0 and subject 

to undertain d, possibly negative, we need the controllers introduced 

above, their application depending upon initial conditions and the selection 

of target. 

Suppose we start from l'.!s as indicated in Fig. 5.12 by point A and 

aim at collision not with Tl but T2. The obvious choice is to use the 

conservative controller (5.3.16) transferring our to-family of motions to 

the damped separatrix at point B and then switching to the dissipative 

controller which was calculated from (5.3.12), but this is only to offset 

the perturbation and negative damping, that is, for d E [-l,OJ The 

oh = hO - h~ to be substituted is known, being obtained from hO E-(io) 

and ClT2: E-(x) = h~ Offsetting R(t) and d E [-l,OJ will let us 

follow the damped separatrix to the saddle (0.85,0) and then along it to 

T2. The same effect is achieved, perhaps more economically by using 

d E [-1,1 J, if we do not switch the controller at B but use the conserva

tive trajectory to some other position in l'.~s' say B I and then use the 

dissipati ve controller. This applies as long as B I is still in l'.. The 

same method of control may apply for passage from l'.!s to Tl. Programming 
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for collision wi th Tl from lI!s, say from point C, we would use the 

conservative controller until or past D, and then switch to the dissipa

tive controller. 

If we wanted sequential collision, say after hitting Tl to collide 

with T2, the obvious way of doing it is to rise the motion with the 

accumulative controller to the threshold hE = E-(0.85,0) and then use 

the dissipative controller. o 

One of the obvious subcases of the sequential collision in the sense 

discussed above is the transfer from one stable equilibrium to another, 

partly indicated in the previous example. It applies to various physical 

scenarios, one of the typical being for instance the reorientation of a 

satellite from one stable periodic orbit into another, see Anchev

Melinkyan [IJ. 

EXERCISES 5.3 

5.3.1 Consider the system 

wi th a, b, d > 0, q E JR, I u I s u and initial conditions q 0 = ° , 
qO ° Find the control program which will rise the trajectory 

to the orbit 1 .2 + l aq2 + l bq4 = h and hold it there for 2" q 2 4 

rotation 'IT, then drop it down to the orbit at th for another 'IT 

and then drop it down to (0,0) Convert the angular distances 

into time intervals. 

5.3.2 For the system 

q + dq + aq - bq3 u 

wi th q E JR, d , a , b > ° I u I s u, find the equilibria and the 

separatrix. Then given the target 

-E S q S E , 

specify the controller which generates the collision from all 

points within the energy cup. What would the saturation value u 
have to be, if the trajectories started outside the cup? 

5.3.3 Consider the double pendulum of Example 1.1.3 with the motion 

equations (1.1.21) shown in Fig. 1.8. Calculate the total energy, 

power and equilibria of the system. Reducing the work region 1I 
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of the system to the range -7T:<;; qi :<;; 7T , i = 1,2, establish l:!.L 

and the thresholds. Then, assuming initial states outside l:!.L' 

find the controller and calculate the time of colliding with a 

sequence of targets surrounding the local minima of H. Find the 

controller allowing the transfer from one such minimum to another. 

5.3.4 A homogenous slender rod of length !!- is pinned at one end so that 

it is free to swing in a vertical plane from its initial horizontal 

(angular) position qO 7T/4 to the vertical position qf = 7T/2 . 

The weight of the rod is located at its C.G. within the distance 

5.3.5 

!!-/2 from either end. Find a control program for an actuator 

located at the pinned joint with the objective of colliding with 
f q at zero velocity. 

The system q + 2dq + 9q = u has a large damping d 

small amplitudes q € [-2,2J and ignorable damping 

this interval. Given initial conditions qO = 

the controller such that the motion amplitudes: 

(i) do not exceed some q = const ; 

(ii) cross some q = const only once. 

0 , . ° q 

ill for 

d = 0 outside 

= 0 design 

5.4 REGIONS OF CONTROLLABILITY 

As mentioned at the opening of Section 5.3, determining the regions 

of controllability (that is, wherefrom the controllers may be used) is the 

second basic question in our control problem. It has been investigated, 

ever since the controllability problem appeared, along a considerable 

number of avenues. However, the Liapunov formalism seems to be the .most 

successful method employed, in spite of the fact that the estimates of the 

regions must be qualified by the choice of V(·) In fact the search for 

"the best" Liapunov function, that is, the V ( .) which offers the maximal 

region of controllability, is a frequently discussed topic, beginning with 

Hall [lJ, Tarnave [lJ, Willems [lJ, Shilds [lJ, Storey [lJ, Mansour [lJ, 

Noldus-Galle-Josson [lJ, later Lewandowska [lJ, Vanneli-Vidyasagar [lJ, 

and recently Blinov [lJ and alas [2J. 

The works on estimating the regions start with investigating regions 

of attraction cited already in Section 3.4, and reviewed recently by 

Chiang-Hirsch-Wu [IJ. Referring to controllability estimates, we recently 

have two main lines of approaching the problem: analytic or geometric, 

and numerical, often combined. The analytic line started with the early 
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work by Roxin-Spinadel [lJ developing the concept of reachable sets, dual 

to controllability, followed by Storey [lJ, Noldus-Galle-Josson [lJ, 

Grantham-Vincent [lJ, Gayek-Vincent [lJ, and a few other works. It may 

be considered a sideline for the study on the degree of controllability 

developed in the recent decade, associated mainly with the problems of 

large flexible space structures (LSS), and reviewed by schmitendorf [2J. 

whose results we already applied. Generalizing this, Skowronski [38J and 

Skowronski-Stonier [2J suggested a method for determining an estimate of 

the maximal controllable D.o using the necessary and sufficient conditions 

for controllability and the concept of semi-barriers between corresponding 

strong regions. 

The numerical approach is based upon retro-integration (finding 

trajectories for -t) from the target boundary either for a specific 

duration, when we want to define D.c (Tc) , or for t -+ _00, aiming at 

aD.c . The method has been widely used by Isaacs [lJ and in terms of the 

Liapunov formalism, that is, taking the retro-trajectories across V-levels, 

it was developed by Grantham [lJ, Grantham-Vincent [lJ, Vincent-Skowronski 

[lJ and Vincent [3J. It appears now that the Liapunov levels, generated 

by retro-integration, agree very conveniently with the cell-to-cell mapping 

method originated by Hsu, see Hsu [lJ, and developed with the successful 

use of V-levels, see Flashner-Hsu [lJ, Guttalu-Flashner [lJ, Flashner

Guttalu [lJ and Guttalu-Skowronski [IJ. 

First, given VC·) and PC·) we look for the stY'ong Y'eeoveY'Y Y'egion 

D.C (P) , later specified by stipulated time. Assuming that aT and aD.c (P) 

are defined by V-levels, see (5.3.6),by Corollary 5.3.1, Condition (5.3.3) 

defines D.c(P) and given it yields the drop in V(x) estimated by 

t+ 
J c VV(x)Tf(x,u*,w*,t)dt 
to 

Then by the nesting property of the continuous T+-family of isochronal c 
levels for any two T~, T~ such that 0 < T~ < T~ < 00, we 

to a threshold, we Note that upon approach have V(x(t"» < V(x(t'» . 
c c 

may use a negative test function but the inequality is still preserved. 

It follows that for each E > 0 there is T(E) such that 

t' 
If c VV(x)Tf(x,u*,w*,t)dtl < E 
til 

C 

(5.4.1) 

for T < til < t' < 00 
c c 

which by the Cauchy criterion for convergence of 

improper integrals implies that there exists a finite limit for 

t+ = t + T+ expressed by 
c 0 c' 
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t+ 
J c VV(x)Tf(x,u*,w*,t)dt 
to 

v < '" • c 
(5.4.2) 

The corresponding level V (x) = v , determines the boundary of the region 
c 

+ + L'lc(P,Tc) , Tc -+ 00, thus of L'lc(P) Obviously (5.4.2) specifies also the 

degree of strong controllability, namely 

v c 
(5.4.3) 

Now that we know that the limit vc specifying the boundary aL'lc(p) does 

exist, we may find methods for determining it, both for L'lc(P) and 

L'lC(P,Tc) One of such methods is the mentioned retro-integration from 

aT. In classical terms it applied to unique trajectories of autonomous 

systems, but its usage may be augmented. By definition; L'I (P) forms the 
c 

-0 '" -0 +J envelope of the (x ,to) -family of 'l!(x ,to,[to ,tc ) : 

int L'lC(P,Tc) = {u cJ?(x o ,to,[to,tcJ) Ixo E L'lc(P) , to ad (5.4.4) 

Let us look closer at one of the motion cones of such a family in the 

process of approaching aT. From the quoted Filippov conditions, we know 

that given u*,w* we obtain a motion from the selector equation (2.2.5) '. 

Since L'lc(P) is covered by uniform strong controllability, at each x O 

of this region we can identify a to-family of such motions. Note that all 

such families of cJ? (x o ,R, [to' tcJ ) pass through the same x O Hence this 

point may be determined by a retrograde trajectory of 

(2.2.5), generated by 

motions and starting from some 

equivalent to one of the to-families of 

~ (xo , t ) = XC E aT. Such a retrograde 
c 

trajectory, represented time-discretely by a point-to-point mapping, is in 

turn equivalent to forward integration of the equation: 

X(T) -f*(X(T» , T = -t ~ 0 (5.4.5) 

where f*(x) = f(x,u*,w*) of (2.2.5). By (5.4.4) and the above, L'lc(P) 

is filled up by the retro-trajectories concerned, see Fig. 5.13. 

Fig. 5.13 
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Consequently, the boundary a~c(p) is that of the family of trajec-

tories of (5.4.5) for T ~ -t Now we ask: How can we determine the 
c 

boundary of such a family of trajectories? 

Let Co : V(x) = const = vT and let {t+T.}, 
c J 

j = 0,1,2, .•• ,T.":;0 
J 

be a decreasing sequence of time instants. Denote C. 
J 

trajectory 

as the set of images 

of points on Co under the mapping along the 

o of (5.4.5) at the instant T.. Then upon departing from the target, 
J 

each C. c: C. l' with the distances measured in terms of V ( .) . 
J J+ 

There are two cases possible. Either the surface aT is disjoint from 

the hypothetical a~C(p), or it is not. In the first case, the boundary 

is formed only by an appropriate terminal C., Let C J _00 
be such a 

terminal map of Co obtained for 

exists, is finite and defined by 

T. ~ 00 • 

J 
Vex) = v 

By (5.4.2) we know that C_oo 

c 
The a~c(p) so obtained is 

+ a candidate which must be confirmed by Conditions 5.3.2 with Vo = Vc • 

The stipulated time candidate region ~C(P,Tc) is then formed by retracing 

points along ~(X(T) ,JR-) to their values ~(X(T) ,TC) where T =-t 
C c 

The corresponding boundary a~C(p,Tc) is thus formed by the cut-off 

V-level C . 
c 

In the second case, when aT n a~c (P) t- ¢I, the surface aT cuts into 

a~c (P) at least in one point and a~c (P) has two ends separated by aT. 

The retro-trajectories emanating from these ends form the boundary a~C(p) 

together with an appropriate terminal V-level, C. , that cuts off the whole 
J 

family of retro-trajectories. 

a~c(p,Tc) . 

COMPUTATIONAL ALGORITHM: 

This also applies to the stipulated time 

Step 0: Choose a test function V(·). Select stopping criteria, a dis

tance index between consecutive levels C. and C. l' denoted do (C.,C. 1) 
J J+ J J+ 

and measured in terms of v(·) , a convergence criterion E > 0 and a 

maximum number of backward mappings K. Select the integration time step 

OT. 

Step 1: Choose p points r=1,2, ... ,p on the level curves 

C. : vex) = v. > 0 
J J 

Map each point once forward. If all points map 

inside C., take C. to be Co' 
J J 

If not, set j to +j and repeat this 

step. 
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Step 2: Using equation (5.4.5) map the points of C. from ,=,. 
J J 

to 

'j+l 'j + 0" with initial conditions x = P; r = 1,2, ... ,p . 

result of the integration are points pj+l 

The 

r 
r = 1,2, ... ,p, which define 

C. 1 J+ 
set j = j + 1 and repeat. 

Step 3: If do(C.,C. 1) < E, j > K stop. 
J J+ 

The level C. 
J 

is the required 

boundary a~c(p) If not, go to Step 1. 

Step 4: Retrace the integration to the level obtained at t 

results in the boundary a~c(p,Tc). 

t which 
c 

EXAMPLE 5.4.1. Let us consider the autonomous Duffing system in the 

following particular format 

- uX 2 - kX l + wxi k > ° ) (5.4.6) 

with the range of uncertainty w E [0,2J and the control constraints 

U : U E [u-,u+J. The system has a stable equilibrium at (0,0) and two 

thresholds at the unstable equilibria xl = ± Ik/w, x 2 = 0, depending 

upon wand fixed for w* which comes from extremizing the energy 

(5.4.7) 

If we now locate the target T about (0,0), then we shall let 
-~- 121214 V(x) = E (x l ,x 2 ) = 2 x 2 + 2 kX l - 2 xl with w* = 2 minimizing 

E (xl 'X 2 ,w). Consequently the thresholds are at xl = ± Ik/2, x 2 = ° , 
and v T V(/k/2, 0) that is, taking aT as the conservative separatrix: 

aT (5.4.8) 

We choose the program P: u = clx21 , c > ° satisfying Conditions 5.3.2 

by yielding V = -ux~ = -clx213. We may now investigate the retro

trajectories. First, let us write (5.4.5) for the present example in the 

form 

) (5.4.9) 

with retro-trajectories starting at (5.4.8). As no trajectory from xO 

lying outside [-/k/2, 1k/2J may reach T (see Example 1.1.1, Fig. 1.4), 

the boundary aT is not disjoint from a~c (P) and these two meet at 

(-1k/2 , 0) and (+/k/2, 0) Thus the retro-trajectories from these two 

points form part of a~c(p) which is completed (closed off) by a suitable 

Compare here the damping separatrices 
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in Example 1.1.1. For computing the above retro-trajectores, we use the 

Hsu method of point-to-point mapping letting c = 1. 0, k = 2. a . 
Initially 5000 points were distributed uniformly on a circle of radius 0.1 

about (0,0) The first closed curve in Figure 5.14 is the retro-trajectory 

obtained by integrating from T = a to T 2.3. The second curve was 

obtained by continuing the integration to T = 2.7 The pattern in Fig. 

5.12 may be compared with the analytic solutions (equation (5.4.9) is 

integrable) obtained in Example 1.1.1. D 

Fig. 5.14 

Let us now see what can be done in estimating the region of strong 

controllability /:'c' without qualifying it by given P(·) or Tc' or both. 

Since (5.3.3) of Conditions 5.3.2 is necessary and sufficient subject to 

(5.3.6), it suffices to find uncertainty w contradicting the existence 

of robust (winning) P(·) at some (x,t), in order to ensure that such 

(x,t) does not belong to /:'C. The set of such points closest (in the 

sense of Section 3.1) to the target T specifies the boundary a/:,c. For 

instance, if the energy threshold about some cup bounds /:'c' some w ( . ) 
may pull a motion over the threshold to the next cup, see Example 5.4.1 

below. We formalize the above in terms of the weak P(·) - barrier of 

Section 3.1 with Q specified as collision, see Fig. 5.15. 

Let V ( .) be the test function and P ( .) the controller of Conditions 

5.3.2, and let aT, a/:'c be defined by the V-levels vT,vc respectively, 

see (5.3.6), the first known, the second to be determined. 

Then let us take of Conditions 3.1.2 as 

the hypothetical 55 defined by a vB-level bounding below its semi

neighborhood determined by the inequality 
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- T- - _ _ 
VV(x) f(x,u,w*,t) ~ 0 , (S.4.10) 

for suitable U E P(x,t) The weak P ( .) - barrier is one of these surfaces, 

selected by the criterion that there is no other surface like that between 

it and a~c: V(x) = Vc 

know that there is no such 

Unfortunately, we do not know v • However, we 
c 

S surface in ~C' so we may use the criterion 

that there will not be a weak P(·) - nonpermeable surface between the pro-

posed surface and the boundary aT: V(x) = vT ' which we know. In 

practical terms, we search for the lower bound of the set defined by 

(S.4.10) and the surface a~c = B~ is the level V(X) = Vc that passes 

through such a bound. Indeed, when the motion concerned starts from a 

point satisfying (S.4.10), the latter condition implies for each t ~ to ' 

that 
t 

J fo(x,u,w*,t)dt> 0 
to 

contrary to (S.3.3). Thus the motion never crosses BP again. 
C 

Fig. 5.15 

When the target T is located about a Dirichlet stable equilibrium in 

some energy cup, as mentioned several times before, for strong controlla

bility for collision we use V(X) = E (x) and a dissipative controller 

P(·) generated by Corollary S.3.2 or minu maxw fo (x,u,w,t) < O. By 

Conditions S.3.2, such a controller secures the required controllability 

against all w(·) 's on the unknown ~c. As the E--levels increase from 

aT : E (x) = vT to the threshold, we come across the level E-(X) = Vc 

at the first appearance of the maximizing w* which actually breaks up the 

robustness of the dissipative strong controller, by generating 

fo(x,u,w*,t) = E-(x) ~ 0, that is, 

level forms the weak P ( .) - barrier 

(S.4.10) along some motion. Such a 
P BC = a~C As the latter is the set 

defined by E-(x) = 0 by Proposition 4.1.1 it may become a negative limit 

set A-, or a positive limit set for the retro-trajectories from aT. In 
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this sense both methods, retro-integration and the weak barrier, complement 

each other. 

Obviously the breakup of the strong P ( .) may not occur below the 

threshold, or even immediately above it. The weak P(·) -barrier may in 

fact surround several energy cups. Where the program breaks up will very 

much depend on whether the to-family of motions crosses the unstable 

equilibrium (saddle position) or avoids it in the process of entering the 

cup concerned. In Example 5.3.3, the strong region for collision with Tl 

from the point C through D and the saddle, that is, crossing over the 

threshold. In fact, by a similar procedure we can reach Tl, or sequen

tially Tl,T2 from any point in f',., as long as the control values remain 

unsaturated. So the strong controllability for collision with Tl is 

global and complete. 

When the target is located about an unstable equilibrium (the thres

hold, as above in sequential collision), we said we must lift the motion 

across the E-levels, so we apply the above discussion with the signs 

reversed. As mentioned several times already, we take V(x) = h+ - E+(X) 
E 

+ if we want to lift the motion to the threshold or another suitable hc for 

other purposes. Then V(x) = -E+(x) ~ -Oh/Tc or fo(x,u*,w*,t) ~ Oh/Tc 

for the max-min pair u*,w*, which gives the accumulative controller 

(3.3.17) required for the rise to the threshold level. After this, we use 

a conservative controller to reach equilibrium. The conservative controller 

this time is obtained by taking oh = 0 in the accumulative controller 

rather than in dissipative as done in Example 5.3.3, see (5.3.16). 

EXERCISES 5.4 

5.4.1 Return to the Van der Pol system of Exercise 4.1.4, consider the 

unperturbed case (i): 

q + u(q2 -l)q + q = 0 , 

and assume the control program such as to make u hold sign. 

Show that the trajectories for u = u > 0 coincide with the retro

grade trajectories (T = -t ) of u = -u < 0 , and conversely, but 

the limit cycle is unchanged. 

5.4.2 Consider the system 
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with I:J. Find the equilibria and 

taking w E [1,2 J, design a control program securing collision 
l l with the target T : Xl + Xl $ 0.2 during 10 sec. Then, using 

retrograde trajectories, find the boundary of the corresponding 

retrieving region. 

5.4.3 A conservative single DOF system consists of a solid magnet sus

pended from a ceiling on a linear spring with characteristic 2q 

over a steel covered bench exerting the magnetic force 

u = -32/ (12 - q) • The magnet is also subject to the gravitational 

force -4q. Derive the motion equation and find the range of q 

where the magnet is effective (retrieving region). Answer q 12 

If the magnet had to lift a mass M from the bench, how would it 

affect the range? 

5.5 CONDITIONS FOR CAPTURE 

Conditions for permanent holding of motions in a target must be as a 

rule somewhat more demanding than that for collision only. We must require 

the entry field H- surrounding the target. The existing literature 

investigating conditions for such "permanent holding" for systems with 

untruncated nonlinearity is not vast, but extends considerably if we 

include the cases of.controlled real-time attraction, which amounts to the 

same idea. The original work on ultimate boundedness belongs to Seibert 

[lJ, see Seibert-Auslander [lJ. It was later developed by Yoshizawa [lJ, 

applied to nonlinear mechanical systems by Skowronski-Ziemba [4J,[5J and 

Skowronski [4J,[9J, and to systems with uncertainty by Barmish-Leitmann 

[lJ and Barmish-Petersen-Feuer [lJ. 

For such systems, in reference to control for capture, the ultimate 

boundedness has been used by Bertsekas-Rhodes [2J and Delfour-Mitter [lJ, 

and later by Skowronski [27J,[29J. Obviously control for asymptotic 

stability implies capture and thus the works on such stability are directly 

related to our present topic. Interested readers may recall the relevant 

literature from Sections 3.1 and 3.2. 

We shall use the conditions introduced in Vincent-Skowronski [lJ, 

Skowronski-Vincent [lJ, Skowronski [29J, and developed in Skowronski [32J. 

Similarly as for collision, we let l:J. o be a candidate for the set in I:J. 

which is strongly controllable for capture in T, but unlike collision, 

we also have some given TC serving as a candidate for the capturing sub-
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target in T. The candidates may corne from necessary conditions or an 

educated guess. Let CTC ~ ~o - TC and introduce a Cl-function 

V ( .) : D ->- R, D (open) ::J cT C' with 

v~ = infV(x) I x E a~o' vTC ~ irifV(x) I x E aTe (5.5.1) 

CONDITIONS 5.5.1~ The system (2.2.6) I is strongly controllable on ~o for 

collision with capture in TC' if there are P(·) and V (.) such that 

(i) V(X) ;:: vTC , for -x i TC 

(ii) V(X) :> V o 1 for x E CTC 

(iii) for all u E ~(x,t) 

c( Ilxll) such that 

there is a continuous positive valued 

'VV(x)T'f(x,t,u,w) :> -c(llxll) , (5.5.2) 

for all w(t) E W . 

To prove the Conditions, we show first that ~o is positively strongly 

invariant under P(·). Suppose not, then (xo ,to) E ~o x R generates 

¢(.) E K(xO,t o) such that for some t l ;:: to' we have ¢(u,xO,tO,t l ) 

= xl E a~o' Then by (ii), V(x l );:: V(xo) contradicting (5.5.2) and 

proving the invariance postulated. 

Now take any ¢ ( .) E K (xo , to) 

integrating, one obtains the estimate 

for the interval of time spent in CTC ' From 

V(x) - vTC ;:: 0 V(xo) - V o :> 0 or V(xO,t o) 

there is c :> c( Ilxll) , V- X E CTC such that 

(5.5.3) 

(i) , (ii) , we have 

- V(x) :> V o - vTC ' whence 

(5.5.4) 

1 -
Letting TC = c- (v ° - v TC ) we conclude that for t;:: to + TC the motion 

must leave CT C. As it cannot leave the strongly invariant ~o, it must 

enter TC' A return to CTC is not possible as then (iii) and (i) contra

dict. Since we have the above for any motion from any point in CTC x R 

the theorem is proved. 

REMARK 5.5.1. Note that if ~o,TC are defined by some V-levels: 

V(x) = v TC ' (5.5.5) 

then conditions (i), (ii) hold automatically. 
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CONDITIONS 5.5.2. Consider a Cl-function V(·) : D +~ and constants 

v~ > vTC > 0 such that (5.5.5) holds. Then in order for (2.2.6) I to be 

strongly controllable on 6 0 for collision with capture in TC it is 

necessary and sUfficient that there is P(·) and a continuous positive 

valued c(·) such that for all UEP(X,t), 

(5.5.2) 

for all w(t) E W • 

Proof of sufficiency follows from Conditions 5.5.1. To show the 

necessi ty, suppose along some ~ ( .) E K (x o , to)' (x o , to) E CTC x ~, for 

each c(llxll) > 0, we have V(x(t)) > -c(llxll). Then no reaching is 

possible. 

COROLLARY 5.5.l. Given (xO,t o) E CTC x~. if there is a pair u*,w* 

such that 

L(x,t,ii*,w*) = min max L(x,t,ii,w) :<; -c(llxll) .. 
ii w 

(5.5.2) I 

the condition (5.5.2) is met with ii 

control program from (5.5.2)'. 

P(x,t). and one can deduce the 

The proof follows from Conditions 5.5.1 by the same argument as for 

Corollary 3.2.2. Similarly as before for collision, we may either use 

(5.5.2) I directly to produce the control program P ( .), or indirectly using 

the L-G controller (5.3.12). The following short technical example illus

trates the calculations. 

EXAMPLE 5.5.1. Consider the system 

where 

1/3 -X2 + aX l + UX 2 

.a = const t- 0 . We let (2a)2/3 

2/3 2/3 2/3 
V(X l ,x2 ) = Xl + X2 - a , 

see Fig. 5.16. Then also vTC = 0 , - 2/3 2/3 
Vo = (2a) -a which makes (i), 

(ii) satisfied. Then 

. 2 -1/3 1/2 1/3 2 2 -1/3 113 
V=3"X [-(Xl +X2 ) J+3"X2 (-x 2 +ax l +uxZ ) 

_ 2 2/3 2/3 1/6 1/3 -1/3 2/3 -1/3) 
- 3" (-Xl -X2 -2Xl X2 -Xl X2 +ax l x 2 +u 

The controller u = 
1/6 1/3 2/3 1/3 

2x l X2 + (X2 /Xl )-

produces v:<;-c _ f (2a) 2/3, as required. 

t- 0 

o 
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Fi.g. 5.16 

REMARK 5.5.2. Note that given the bound c of the rate of change of V ( .) 

in Conditions 5.5.2 we may find TC = (v~ - vTC)/c- or alternatively, 

given TC' the constant c may be found: 

c 
Vo - vTC 

TC 
(5.5.6) 

By definition, there may be no such thing as an objective composed of 

a sequence of captures, but one of the obvious applications of the study on 

collision with capture is the objective composed of sequential aollisions, 

cf. Section 5.1, ter-minating with aaptupe. Then, if the reachings must be 

in stipUlated time, so must be the terminal capture, which in turn pequipes 

stipulated TC' see Fig. 5.17. Also in the case of x represented by 

variables relative to the target, that is, in path tracking, both the path 

TC and TC are stipulated. Obviously there are other situations when 

arbitrary TC' TC cannot be allowed. 

Fig. 5.17 
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CONDITIONS 5.5.3. The system (2.2.6) I is strongly controllable on ~o for 

collision with capture in TC after TC if there is P(·) defined on 

eTC ~ ~o - TC and a C1-function V(·) : D ~lR, D(open) ::> CTC ' such that 

(i) V(X) ~ vTC for x 1 TC 

(ii) V(X) :$; v~ for x € CTC 
(iii) for all u € P(x,t) , 

(5.5.7) 

for all w(t) € w . 

The proof follows from Conditions 5.5.1, if we specify c from 

(5.5.6). From Conditions 5.5.2, we have 

COROLLARY 5.5.2. The system (2.2.6)' is strongly aontrollable on ~o 

defined by (5.5.5) for aoUision 'With aapture of TC defined also by (5.5.5) 

after stipulated TC if and only if Conditions 5.5.2 hold with c in (5.5.2) 

speaified by (5.5.7). 

Sufficiency follows from Conditions 5.5.3. To show necessity, observe 

that if not (iii) then for some u,w we have 

·1-
V(t) > - -- (v - vTC ) . 

TC ° 
Integrating it along an arbitrary motion from anywhere in CT C ' 

_ v; - VTC 
V(x) -V(xo) > - (t-to)' 

TC 

or 

which means that the drop in the value of V(·) is not sufficient to cross 

aTe for all t - to ~ TC ' . which contradicts collision and thus capture. 

The constant -c in (5.5.7) determines the upper bound of the dissi-
- b. ~ pation rate along the motions concerned, and given v ° - vTC = ho - hTC = uh 

and the time interval TC' c may be calculated. In turn, knowing this 

speed of dissipation and TC' we may find oh for the objective involved. 

By the same argument as before, we have the following corollary. 
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COROLLARY 5.5.3. Given -0 (x ,to) E !:J.o x lR, if there is a pail' (ii* ,w*) 

suah that 

L(x,t,u,w) 
V o - vTC 

L(x,t,ii*,w*) min max ::; - , (5.5.8) - w TC u 

then the aandition (iii) of Conditions 5.5.3 is met with ii E P(x,t), that 

is, it may be possibZe to deduae a winning aontroZ program from (5.5.8). 

In terms of the mechanical system, the control condition for dissipa

tive controllers become 

hO - hTC 
min max fo (x,ii,w,t) ::; (5.5.9) 
ii w \ 

TC 

with our standard choice of the test function vex) E -(x) and when we 

use the controller all the way to the capturing energy level vTC = hTC ' 

from a!:J.o. If not, the corresponding oh = h ° - h TC ' h ° = E- (xo) 

applies instead of the total drop ho - hTC ~ hO. For the accumulative 
- + -controller, we take vex) = ho - E (x) as before for collision, and thus 

the condition is 

max min fo(x,ii,w,t) ~ oh/T 
ii w 

(5.5.10) 

for generating the influx across a desired oh > 0 over the time interval 

T. Observe that (5.5.10) gives the measure of the rate of energy usage by 

the non-potential forces. Then the work of such forces is the corresponding 

energy flux discussed in Section 5.3, measuring the amount of the energy 

flow h(hO,to,t) along the motion concerned. For design of the conserva

tive controller we use oh = 0 and the equality in either (5.5.9) or 

(5.5.10) depending on whether the motion comes from H- or H+. The pro

cedure of controlling for capture is the same as for collision discussed in 

detail in Section 5.3 and illustrated in Example 5.3.3. Our targets may 

however differ from those considered in the collision case, as capture is 

a terminal type of objective. It is thus natural to deal with the minimal 

invariant positive limit sets filling up the capturing subtargets TC. The 

subtarget itself may be designed as a real time attractor below or above 

some E-level, as well as enclosed between two E-levels, the latter in the 

case of steady state periodic orbit being the limit set. In the first two 

cases, we use the technique of control described in Section 3.3 with the 

controllers designed so as to satisfy conditions (3.3.12) I and (3.3.17) for 

capture below and above some E-level, respectively. We shall give an applied 

example of this in Section 5.9. In the second case of sandwiching TC 

between two levels we must obviously apply both conditions leading to 
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(4.1.11), but some comment may be required here. 

Applying both conditions (3.3.12)' from above and (3.3.17) from 

below, we actually use the capturability Conditions 5.5.2 twice, with two 
+ -

different test functions V = E-(x) thus also formally aiming at two 

different TC's: TCA above and TCB below. Figure 5.18 shows the pattern 

within the basic energy cup. When we do not need to win over the uncer

tainty, in some circumstances a single function V(·) may be used with 

the Proposition 4.1.1 adjusted to capture: (4.1.7) replaces (5.5.2). The 

proof is obvious as asymptotic stabilization implies capture. 

LIMIT 
STEADY 
STATES 

h 

Fig. 5 • .18 

EXAMPLE 5.5.2. Consider the system 

u = 2 

V 

-X~X2 - XlX; - x~ + u l 

5 3 25x 2 + Xl - X 2 + u 2 

fj, and T C : 19/4 :s; ~~ + x; :s; 21/4, while the function 

see Fig. 5.19. 

we obtain 

Letting the controller 

The above V(·) satisfies (i), (ii) of Conditions 5.5.1 automatically, 

Vex) is negative for (x~ +x;)~ > 5, positive for (xi +x~)~ < 5, which 

satisfies condition (4.1.7) in the neighborhood of xi + x; = 5. 0 
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Pig. 5.19 

Note here that the TC between two levels may be located anywhere in 

~, not only inside a cup. Turning back to Example 5.3.3, we can for 

instance have it covering the joint threshold for all three cups, or the 

threshold of one cup, say the basic. The first case is marked by the dashed 

area, the other by the crossed area in Fig. 5.20. 

Let us now return to the general discussion and observe that the 

design of the steady state limit set within TC may be attained by using 

the condition (4.1.19) and a corresponding conservative version of the 

previous controller, either dissipative or accumulative, depending on from 

which side of the limit set the approach is made. 

Consequently to the above, and to what has been said regarding the 

objectives of sequential collision, we may now state that the design of a 

controller for the global study, outside neighborhoods of equilibria, or 

as we shall briefly say a global controller, requires the ability to 

Pig. 5.20 
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maneuver for collision with several subsequent targets and then capture in 

some subtarget, in most cases enclosing steady state limit set. For such 

maneuvering we need the map of options in the state space, given on one 

hand by the conservative reference frame, that is, the E-level system, 

and on the other by the pattern of state space trajectories of the unper

turbed and uncontrolled system without uncertainty, that is, (2.2.5). Such 

a map of options forms the basis for planning the desired path of the 

motions in the maneuver concerned, and thus for selecting the right 

succession of available types of controllers. The need for such a map has 

been quite visible from Example 5.3.3. It is particularly needed for the 

design of global controllers with composite objectives. The rules for 

introducing such a map have been discussed in Section 4.1 where the 

Properties of Disjointness and Identification together with separating sets 

were introduced. A more detailed map can only be made for case studies 

with specific scenarios and objectives. The switching states and instants 

between the controllers may be calculated from the condition of planning 

"the best" path of motions. The best is taken according to some cost 

criterion, possibly using necessary conditions for optimal strong controll

ability, see Section 5.2. 

Whatever the outcome of the planning, the proposed path of motions 

must satisfy sufficient conditions for controllability or strong controll

ability, whatever applicable, see Definitions 5.2.1, 5.2.2. To this effect 

we may use conditions given in Section 5.3 for collision objectives and of 

this section for capture. 

Then, if we want to adjoin some cost-optimal objective for additional 

qualification of the path, we may use the sufficient conditions for optimal 

strong controllability which follow. Such conditions may be obviously used 

also to confirm the candidates for the sequence of switching states and 

instants found from the necessary conditions for optimal path. 

Referring to capture we shall specify the terminal instant in (5.2.14) 

as t f = to + T( The corresponding strong region will be denoted by ~C 

and we obviously have ~~ c ~(. Then since the corresponding T~ must 

satisfy TC c ll~ nT, it may differ from T ( • Using our usual argument, 

we stipulate TC that satisfies the necessary conditions, but this time 

from the cost-non-permeability that is (5.2.11), passing 'dT* through a 

cost-non-permeable surface closest to 

~o for ~C itself. Then the pair 

sufficient conditions. 

T* A ( , Llo 

It also justifies a candidate 

must be confirmed by the 
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The sufficient conditions for optimization used below have been 

introduced by Stalford-Leitmann [IJ. Their application to optimal capture 

was investigated in Skowronski [27J, we use this work here. Let 

CT* ~ I::, - T* and consider a function V ( .) : D -+.R, D (open) ::;, CT:,. with 
C 0 C <-

* * Vo ' vTC defined as in (S.S.l). 

CONDITIONS S.S.4. The system (2.2.6) I is optimally strongly controllable 

on 1::,0 for collision with capture in T~, if there is P * ( .) defined on D 

and a C1-function V(.) : D -+R such that 

(i) V(x) 

(ii) V(x) 

(iii) for all u* € P*(x,t) , 

V(x)T·f(x,t,u*,w) ~ -f~(x,t,u*,w) , 

for all w € Wand with 

O < * * < T fV(- t -* -) - Vo - vTC - C· 0 x, ,u ,w 

(iv) there is w*(·) such that 

_T-- -- 'V---'i7V(x) ·f(x,t,u,w*) 2: -fo (x,t,u,w*) 

for all u € P (x, t), and all P ( .) winning capture. 

(S.S.ll) 

(S.S.12) 

(S.S.13) 

Since v - --o < fo (x,t,u,w) < 00, the conditions (i) - (iii) satisfy Condi-

tions S.5.1, yielding ,strong controllability for capture. Thus we only 

have to prove the optimality. From (iii), (iv) one obtains respectively 

f~(x,t,U*,W) + 'ilV(x)T·f(x,t,u*,w) 

f~(x,t,u,w*) + 'ilV(x)T.f(x,t,u,w*) 

-R. (t) , 

R.(t) , } (S.S.14) 

for some R.(t) > 0 and all t 2: to . Integrating both equations (S.S.14) 

successively between to and tc = to + TC ' we obtain 

f tc v - - - - 0 -c ftc fo(x,t,u*,w)dt = V(x ) - V(x ) - R.(t)dt , 

-0 -c ftc V(x ) - v(x ) + R.(t)dt , 
} (S.S.lS) 

to 

On the other hand, from both (iii) and (iv) 

together, we have 

v - -* -* n - T -fo(x,t,u ,w ) + vV(x) ·f(x,t,u*,w*) o (S.S.16) 

and integrating 
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ftc v - - -
fo (x,t,U* ,w*)dt 

-0 -( 
V(x ) - V(x ) • (5.5.17) 

Comparing (5.5.15), (5.5.16) with (5.5.17) gives the optimality defined by 

the saddle condition (5.2.4), thus completing the proof. 

Observe that given the Liapunov function the condition (5.2.14) with 

t f = to + TC estimates the size of L~. Observe further that from Remark 

5. 5 • 2 and (5. 5 . 7), we have 

v W E W , (5.5.18) 

which yields 

T = ~ (v* - vT*C) (5.5.19) 
C fV 0 

o 

Thus either T( may be calculated from given V ( .) or L~ may be established 

wi th stipulated T( which is our present case. On the other hand, the 

necessary conditions for optimality (5.2.11) produce the control program 

p* ( • ) the same way as the Corollary 5.5.1 produced P ( .) winning capture. 

If such P(·) satisfies Conditions 5.5.4, it must also satisfy Conditions 

5.5.3. 

Basically the same philosophy, but without formal checking against the 

sufficient conditions, may be found in Grantham-Chingcuanco [lJ, with more 

details than we can provide in this text. See also Section 5.6. 

v - - - _ When the cost is time, we have fo(x,u,w,t) = 1 and the so called 

time optimization, a somewhat simpler problem. The latter may perhaps be 

the reason for its popular use, often beyond applicability, for instance 

minimizing work intervals for particular machines in assembly line where 

stipulated time is essential and minimization may destabilize the system, 

see Barmish-Feuer [lJ. 

On the other hand the cost, which is most appropriate in our search 

for the best qualitative path of motions, is the energy flux minimization, 

obtained via the Pontriagin Principle confirmed by sufficient conditions. 

We may use here the routine of parametric optimization proposed by Klein

Briggs [1 J: make the state variables dependent not only upon t, but also 

upon some other parameters such as initial and t~rminal positions, switch

ing states and instants, etc. Analysing the energy flux f:(x,u,w,t) 

~ fo(x,u,w,t) =E(x,w) this way, we may specify the most energy-economic 

path of motions. 
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Turnin9 now to the size of both 6.r; and the strong region 6.C ' let us 

observe that TC if it exists must be positively invariant, whence collision 

with TC becomes capture. Consequently the regions of controllability 6.c 

and strong controllability 6.c for collision with TC found by the methods 

discussed in Section 5.4 are identical with the regions 6.r;' 6.C respec

tively. So once TC is either assumed or confirmed by sufficient condi-

tions, we establish a6.c by the methods of Section 5.4. The same argument 

applies to 6.* 6.* 
r;' C 

. T* g~ven C. 

EXERCISES 5.5 

5.5.1 For the system 

find a feedback control program securing strong capture in the 

t t T 0 45 < 2 2 < 0 5 arge C:· - xl + x 2 - . with w E [0,1] . Calculate 

the time T C of such capture. 

5.5.2 Prove that u = x3 secures capture in TC 

trajectories of the system 

Xl - Xl - 2u 

x2 - x 2 + 2u 

*3 -u . 
Find the region of controllability. 

5.5.3 Find the control program that generates controllability for capture 

in a target about (0,0) for the system q + 2u I q I + 2q + q2 = 0 . 

Find the region and the saturation control G. 

5.5.4 Find the retrieving region for capture in a target about (1,0) of 

trajectories of the linear system q + q + q = u, under the non-

linear controller u = IjqT . Note that the equilibrium is shifted 

to qe = 1 which may be shown asymptotically stable. 

5.5.5 Show that the controller 
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secures the strong controllability for capture in a target 

T : X~ + X~ ~ 1 of trajectories of the Van der Pol system 

Xl = X2 ' *2 = -uw(xi- l ) -X , with WE [1,2J Assuming G, 
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5.5.6 Let the origin of JR.l be the source of a potential with intensity 
l l inversely proportional to the square distance V(xl'x l ) = k/(x l +Xl ) 

and consider a point mass with a given initial kinetic energy 

T = t [(x~)l + (X~)lJ. Ignoring other forces, find a control 

program P ( • ) under which the mass is charged with the full potential 

Vmax ' that is, the point stays (rendezvous) for some time interval 

in a target located about the source. 

5.5.7 Consider the system q + wq = u, q" R, with the controller 

5.5.8 

u = ±k for :it < 0, :it > 0 respectively, and w E [1,2J. By 

completing the square, show that the trajectories consist of 

ellipses centered at q = ±k/w, q = 0 for :it > 0, x < 0 , 

respectively. Then assuming TC about (0,0) verify the strong 

controllability for capture in finite time. Calculate this time. 

l l Find the controller generating capture in TC: xl + Xl 5 1 within 

the time TC = 10 sec for trajectories of the system 

Establish the region of controllability for such a capture. 

5.6 SPACECRAFT LARGE-ANGLE REORIENTATION 

An illustrative example of controlled maneuvering that should end with 

capture is the case of controlling a spacecraft for stable reorientation/ 

slew maneuvers, which is the basic objective in any space mission. The 

conventional single-axis, small articulation-angle models are no longer 

adequate for present demands in such control. Consequently the system 

considered is nonlinear (involving trigonometric functions) with nonlinear

ity which may not be truncated more than the angular amplitude of rotation 

indicates - see our comments in Example 1.1.1 - and the study must be 

global. 

The rigid body model of the craft may have its orientation represented 

by a direction cosine matrix, Euler angles or, more recently, in terms of 

EuZer parameters sometimes also called quaternions, as explained below. 

Such a representation has been applied for the Space Shuttle and Galileo, 

see Wong-Breckenridge [IJ. The controllers used are either of the standard 
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feedback type discussed so far, see Wie-Barba [lJ, or adaptive (model 

reference, variable structure, etc.) to which we refer later in Chapter 7. 

These controllers are implemented by means of reaction wheels, usually for 

slow maneuvers, or using on-off thrusters (jet actuators), or both. The 

combination of both provides better fuel economy. 

Ignoring gravity (potential) and damping forces, the motion equations 

about the principal axes of inertia take the Euler format, well known from 

Mechanics, 

JIW I + (J3 -J2 )W2W3 u l 

) J 2W2 + (J l -J3)W1W3 u 2 (5.6.1) 

J 3W3 + (J2 -J j )W j W2 u 3 

]h the above J i ' i = 1,2,3 are the principal moments of inertia, 

w. e., i = 1,2,3 
1. 1. 

are the angular rates of the rotations 8. , and 
1. 

i = 1,2,3 are the control torques supplied by the actuators. 

First let us consider briefly the options offered by the Euler angle 

method. Choosing the state variables x. 8. 
1. 1. 

Wi' i = 1,2,3 , 

we can rewrite (5.6.1) as 

Xl X4 

*2 Xs 

X3 X6 

X4 -[(J3 -J2)/J j ]X SX6 + uj/J j I *s -[(J j -J3)/J2 Jx 4 x 6 + u 2/J2 

X6 -[(J2 -J j )/J3 Jx 4 x S + u 3/J 3 

(5.6.2) 

Given we aim at capturing the state trajectories of (5.6.2) in 

a target about (0, ... ,0) with dTe determined by constant angular veloc

ities X;+i' which leads the system to the specific target orientation 

e 
x. 

1. 

in the B tipu lated time te' 

In view of our assumptions, the potential energy of the system 

vanishes and thus the total energy reduces to kinetic: 

E(x) = + (JjW~ + J2W~ + J3W~) which is the first integral of the free 

(uncontrolled) system: u j = u 2 = u 3 = 0 and is taken as our test function 

V(x). Indeed, simple calculation shows that for the free system Vex) = 0, 
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which agrees with the fact that the free coasting spacecraft exhibits 

stability (but not asymptotic stability) and drifts along the conservative 

trajectories. Then, the control condition required by Corollary 5.5.3 is 

:5 - (5.6.3) 

satisfied by the controller 

{ : (5.6.4) 
i = 1,2,3 

with 

o ,3 0 2 
h = L. 1 J. (x3 .) /2 , 

~= ~ +~ 

stipulated time tc and S i calculated as in (3.3.13) and (5.3.13). 

We turn now to the Euler parameter or quaternion method. From the 

Euler theorem, cf. Hughes [3J, we know that the rigid body attitude can 

be changed from one orientation to another by rotating the body by the 

angle ¢ about the so called Euler axis specified by the unit vector 
- T a = (a l ,a2 ,a 3 ) fixed to the body and stationary in the inertial frame 

of reference. The above mentioned method of Euler parameters measures the 

change of attitude concerned in terms of such parameters which determine 

the rotation of the Euler axis. Let ¢ be the magnitude of this rotation. 

We define them as 

i = 1,2,3 , } (5.6.5) 

where the c i are direction cosines of a, which in turn form the rotation 

matrix for the axis, see Hughes [3J. Differentiating (5.6.5) with respect . . 
to time and inserting the formulae for ¢ and a, we obtain the kinematics 

of rotation in the format of the following four linear equations for 

determining the parameters E o, ••• ,E 3 

EI 1.. (WIE O -Wz E 3 +W3Ez ) 
z 

(5.6.6) 
E z 

I 
(W I E 3 +W2 E O -W3E I ) 2' 

E:3 
I 

(-WIE z +WzE I +W3 E O) ='2 ; 

with variable coefficients WI' Wz ' W3 

initial conditions E~ = Eo(O), ••• ,E~ 

given from (5.6.1), and with 

In particular (1,0,0,0) 

determines the initial alignment with the inertial reference frame. 
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Hughes [3J argues convincingly that the method of Euler parameters 

is computationally superior to all others available (Euler angles, direc

tion cosines, Euler-Rodriguez, etc.), which is essential when dealing with 

the type of small computers available on-board the spacecraft. Unfortun

ately the method has its shortcomings too. It may be shown that the system 

matrix of (5.6.6), A(t) in our notation of Section 3.3, has vanishing real 

parts of some eigenvalues yielding the equilibrium E. = 0 
J. 

i=0, ... ,3 

stable, but not asymptotically stable, while the customary methods of 

numerical integration have stability boundaries that may not cover the 

case, see Wie-Barba [IJ. Nevertheless, Euler parameters have one decisive 

formal advantage when taken as state variables instead of the standard 

6. ,W. , i = 1,2,3, namely that the transformation (5.6.5) hides the 
J. J. 

nonlinearity of the trigonometric representation. This will become clear 

below. 

Wie-Barba [lJ propose the following quaternional controller, 

u l -u(GE + GIW I ) 

1 
el 

Uz -U(GE + GzWz ) ez 

U 3 -U(GE + G3W 3 ) 
e3 

(5.6.7) 

with alternative modification to 

u l -U(GE sgn E + GI WI) 

) 
e I eO 

Uz -U(GE ez sgnEeo + G W ) 
z Z 

u 3 -U(GE sgn E + G3W3) 
e3 eo 

(5.6.8) 

where 

E E\ i\ -E z -E I EI el 

E -E 3 Eo EI -E 2 Ez ez (5.6.9) 
E Sz -SI So -S3 E3 e3 

E SI Sz S3 So Eo eo 

wi th E . being control error Euler pa:r>ameters, u the saturation level of 
eJ. 

actuators and G, G i linear feedback coefficients (posi ti ve control gains). 

Equation (5.6.9) is obtained via successive parameter rotation using the 

multiplication and inversion rules. For So, ... ,S3 stipulated as the 

initial (1,0,0,0), E , ... ,E become the current Eo (t) , ... ,E 3 (t) . 
eo e3 

For the sake of illustration, we first simplify the model (5.6.1) to 

a single DOF, say rotation about axis 1, and represent it in the format 
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(1.5.19). Then introducing the attitude error ¢ (t) ~ ¢(t) - ¢ with 
e 

respect to the target attitude ¢, and substituting the controller 

(5.6.7), we obtain the oscillator 

similar to that discussed in Examples 1.1.1, 3.2.1 and 5.3.3. Following 

our practice so far, it would be natural to choose the state variables as 

xl ~ ¢e x 2 ~ ¢e ¢ = WI in the state-phase-plane (X I 'x2 ) = (¢,W I ) 

in Figs. 1.1,5.12 with the equilibria ¢e = 0,±2rr,±4rr, ... , we = 0 . 
e I 

The damped separatrices pass through the unstable equilibria 

¢: = ±2rr, ±6rr, ... , corresponding to Eo = -1. These separatrices act as 

weak P-barriers between regions of strong recovery for collision or capture 

in targets about the stable equilibria, the latter selected from the 

sequence ¢: = 0,±4rr,±8rr, ... , corresponding to Eo = 1. Before the con

troller was chosen, we could have aimed at capturing the trajectories in 

any such target TC about a predetermined stable equilibrium, not necess

arily the basic one. This could have been attained after stipulating a 

number of left or right rotations, while reorienting the craft from some 

initial position. This would lead to a specific amount of maneuvering in 

the state plane, exactly in the manner described in Example 5.3.3. 

The reader may appreciate the fact that the nonlinearity in (5.6.10) 

which must be recognized depends precisely upon the number of rotations or 

parts of them which have to be made, and thus the number of equilibria 

involved. However, since our controller is already selected as (5.6.7), 

and substituted in (5.6.10), we can only talk about the recovery regions 

mentioned and the trajectories depend upon their initial states only. 

Obviously there is still a certain freedom of choice left by selecting the 

gains G, GI • Observe that when GI = 0, (5.6.10) becomes conservative 

with trajectories that cross the damped s13paratrices along E-levels in a 

similar manner as was shown in Section 5.3 and illustrated in Example 5.3.3, 

see route AB' in Fig. 5.12. 

substituting the controller (5.6.8) instead of (5.6.7), one obtains a 

slightly different shape of H: 

II~ + uG I¢ + uGc sgn [cos (¢ /2) ] sin (¢ /2) = 0 eel e e 
(5.6.11) 

with unstable equilibria ¢e = ±rr,±3rr, .•. and stable ¢e = 0,±2rr,±4rr, •.. 

The role of transformation (5.6.5) is seen directly from (5.6.10), 

(5.6.11). Taking the state variables in terms of the Euler parameters, we 

hide the trigonometric functions of (5.6.10), (5.6.11) within them, thus 
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simplifying the motion equations. The procedure is however purely formal 

and does not change the physical nature of the system which still has to 

have several equilibria and rotate when maneuvering. 

We may turn now to the quaternion state representation, taking advan

tage of (5.6.5) and consider the full three DOF system (5.6.1). Let 

eo, ••• ,e 3 be the values of the parameters E O, ••• ,E 3 specifying the 

define the relative variables desired target attitude and 

OE. (t) ~ E. (t) - e., i 0,1,2,3 We shall choose our state variables 
~ ~ ~ 

now as x. = OE., x 3 . 
~ ~ +~ 

must be performed with the 

Wi' i 1,2,3. The intended reorientation 

aim of capturing the trajectories of the joint 

system (5.6.1), (5.6.6) in a target about a stipulated equilibrium 

attained after a desired number of rotations. 

We may now use and verify the full 3D controller (5.6.7). To this aim 

let us set up 

V(x) ~ 1 \3 J.W~ AG \3 OE 2 
= 2 Li=l ~ ~ + u Li=O i (5.6.12) 

which is positive definite with V(x) +00 as Ixl +00. Substitute (5.6.7) 

and (5.6.9) into (5.6.1) and multiply each resulting equation by corres

ponding wi. Then mUltiply each equation (5.6.6) by the corresponding 

u G OE i , i = 0, .•• ,3 and add the resultant to the previously modified 

(5.6.1). We obtain 

V(x) I~=l A 13 E. (OE.) 

} 
J.W.W. + 2u G i=O 
~ ~ ~ ~ ~ 

(5.6.13) 

-u I~=l G.w~ ~ ~ 

which secures the controller (5.6.7) as dissipative, and with a suitable 

choice of Gi > 0 makes the Corollary 5.5.3 satisfied between the initial 

h 0 and the desired hTC • 

EXAMPLE 5.6.1. Specifying now the target T = (0 0 0 l)T and assuming 

the simulation values 

J 3 12,000 km/m2 , 

WO 
3 

0.053 deg/sec , 

J 1 = 10,000 km/m2, J 2 = 9,000 km/m2 , 

u = 20 N/m, W~ = 0.53 deg/s W~ = 0.55 deg/set, 

G = 0.6, G. 
~ 

177 and 0.95 , E~ = 0.7 , 

EO 
3 

0.15 , E~ = 0.15, cp = 162 0 we obtain the simulation results seen 

in Fig. 5.21. 
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Fig. 5.21 

5.7 CONTROL OF WHIRL-WHIP IN ROTORS 

425 510 595 t sec 

Amplitude control of a steady state limit trajectory in self-exciting 

(accumulative) vibrations of a rotor in gas turbine, jet engine, pump or 

compressor, induced by a flow of the fluid which generates the motion, is 

also a good example to illustrate controllability for capture or stabiliza

tion between two stipulated energy levels. The reader is asked to recall 

our comments at the opening of Section 4.3 on, among other cases, the case 

of whirl-whip self-exciting vibrations, occurring in rotors supported by 

fluid lubricated bearings. Similarly, like flutter described in Section 

4.3, the whirl-whip phenomenon is fluid induced. However, now it is oil 

or other lubricant at the bearing, instead of air, which provides the 

energy source for accumulation. The latter is caused by coupling between 

the rotation, which produces the fluid dynamic forces in bearings, and 

lateral vibrations generated by such forces. The mechanism can be briefly 

described as follows, see Muszynska-Bently [lJ. The rotating shaft is 

embedded in fluid at a bearing or a seal and pulls the fluid into a forward 

rotary motion in the direction of the shaft rotation. The fluid flow is 

generally three diminsional, but the circumferential component usually may 

appear most significant. This component generates the effect of the fluid 

rotary force which in turn causes the shaft lateral vibrations concerned. 
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Fig. 5.22 

A more detailed description follows from .the graph of the angular 

speed of the rotor WR versus the frequency W of the induced shaft lateral 

vibrations shown in Fig. 5.22. 

The straight line through the origin with slope 1/1 marks the 

synchronous vibrations: WR the same as the vibration frequency W 

( Ix = one per one rotation). For small rotation speed WR the effect of 

the fluid action is minimal, and we have a small amplitude synchronous 

lateral vibration about the stable (basic) equilibrium caused by the 

imbalance of the rotor only - no negative damping. At higher wR ' but 

still below the first balance resonance, that is, the first natural 

frequency of the rotor, the fluid dynamic forces begin to be effective. 

They destabilize the equilibrium and, along the synchronous vibrations, 

there appears a self-accumulative motion called whirl, produced by the 

mentioned coupling. It exists simultaneously with the synchronous compon

ent and establishes the vibrations at some subsynchronous frequency, usually 

around i- x , generating a stable limit steady state A+. with increasing 

rotor speed, the whirl frequencies maintain the constant ratio with it. 

The amplitudes of the whirl are usually higher than those of the synchronous 

vibrations forced by the imbalance alone, and they remain nearly constant. 

At the bearing the vibration amplitude may cover entire radial clearance. 

When WR grows further, and approaches the value of the natural frequency 

of the rotor, the whirl itself becomes unstable, disappears and the motion 

returns to the forced synchronous vibrations only, which in this range of 

speeds have high (resonant) amplitudes. with further, growth of the rotative 

speed, the whirl returns. When the rotative speed reaches about twice the 

first balance resonant speed, the whirl becomes replaced by self-exciting 

vibrations called whip, which are characterized by the frequency equal to 

the rotor natural frequency. 
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Such a whip produces lateral forward precessional subharmonic vibra

tions of the rotor with constant frequency, independently upon the increase 

of wR ' and corresponding to the first bending mode, see Muszynska [2J. 

The whip vibrations of the rotor form a stable limit steady state A+ with 

amplitudes which may become very high (resonant frequency) and dangerous, 

even if they are limited at the end by the clearance of the bearing. In 

fact, in linear models with single equilibrium, the amplitude will appear 

growing indefinitely. Fortunately the reality is nonlinear and such growth 

is replaced by the above described limit steady states, see Fillod

Piranda-Bonnecase [lJ. 

It may be interesting to note that whirl/whip does not appear when 

the rotor is under a heavy radial load, resulting in high shaft eccentricity 

at the bearing. Such a situation cancels self-vibrations due to changes 

in the flow pattern = no more predominance of the circumferential flow. 

We obviously may want to control whirl/whip towards lower amplitudes, 

that is, lower energy levels. The presently used passive methods are 

based on redesigning the system in order to avoid all types of instability 

influencing the system (imbalance, misalignment, rotor-to-stator rub, 

internal friction, electro-dynamic forces in actuators, wear and tear 

effect making parts loose, etc.). Such methods help to reduce whirl and 

whip, but they work as long as one can identify the cause of ·vibrations. 

This is not always possible, off-line at least, and to satisfactory effect. 

A common remedy used is to increase the overall external damping which, 

obviously, produces considerable loss of power. Hence the recent trend to 

active control, designed to provide damping only while it is needed, that 

is, on-line, cf. Hagedorn-Kelkel-Weltin [lJ. The presently popular electro

magnetic damping is one of the most significant representatives of the 

method, see Gondhalekar-Holmes [lJ; Nakai-Okada-Matsuda-Kibune [lJ, Salm

Schweitzer [lJ, Ulbrick-Anton [lJ, for an up-to-date review of the problem 

see Muszynska-Franklin-Bently [lJ. In the latter work, another method of 

active control is proposed. The method introduced and developed in the 

Bently Rotor Dynamics Research Corporation seems to be more efficient than 

the electro-magnetic damping, as it affects directly the cause of the 

vibrations, the circumferential flow. 

The basic features of the flow concerned are the fluid average circum

ferential velo::ity ratio A and the radial stiffness KF of the fluid film. 

Both AF and KF are functions of many parameters, the principal being the 
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Fig. 5.23 

ECCENTRICiTY -
CONCENTRIC 
SHAFT 

( b) 

shaft eccentricity: KF is "hard" nonlinear, that is, stiffly increases 

with the eccentricity, while A decreases with it, with the decrease 
F 

accelerating at high eccentricity values up to cutting off the circumfer

ential flow completely at the so called "wall value", see Fig. 5.23(a), 

(b) where C means the radial clearance of the bearing. 

The fluid rotates with angular circular frequency AWR , where wR is 

the angular speed. The Bently method is based on injecting into the 

bearing a controlling external flow directed tangentially and opposite to 

rotation. Such a controlling flow reduces A and lowers the amplitude of 

the limit trajectory below a stipulated energy level. 

Consider a slender shaft with the mid-span located disc supported 

rigidly without friction on one side and in an oil 360 0 lubricated 

cylindrical bearing on the other, as shown in Fig. 5.24. The following 

lumped mass model has been derived in Muszynska [2J. Let zi = Xi + jYi ' 

i = 1,2 be the displacement vectors at the disc and at the bearing, 

respecti vely. The complex representa,tion allows us to reduce the system 

Fig. 5.24 
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to that with two complex DOP. Moreover, as mentioned in the description 

of the whip, we assume the rotor to be at its first (lowest) bending mode. 

The Cartesian motion equations represented in complex coordinates 

Z. 
~ 

1 z·1 = Ix? + y?, i = 1,2, can be written as follows: 
~ ~ ~ 

2 jWRt 
M121 + dZ 1 + k 1z 1 + k12 (zl -z2) = mrwRe 

(M2 + Mp) Z2 - 2jMpXPWRZ2 - MpX~W~z2 

+ [dp+~D(lz21)](Z2 -jXpWRZ2 +juz 2 ) 

+ [kp+~K(lz21)]zz + k21 (z2 -zl) + k 2z 2 = 0 

(5.7.1) 

where M1 , Mz are rotor modal masses, d is the external viscous damping 

coefficient, k 1 , k21 ' k12 ' k z are the modal elasticity coefficients with 

k2 covering also the external spring stiffness; m and r are the unbal

anced mass and its radius in the rotor; Kp(Zz) = kpz2 + ~K(lz21)z2 and 

Dp (z2) = dp z2 + ~D(lzl)Z2 are the fluid radial elasticity and damping 

characteristics, respectively, with ~K(·)' ~D(·) hard-nonlinear positive 

functions and kp , dp posi ti ve coe fficien ts; Mp is the fluid inertia 

coefficient and u is the air jet inlet external flow average tangential 

velocity representing the control variable. 

Y 1 ' 

d ~ diM 
1 

Then the state equations take the format 

- 2YAp WRXa - k 2x Z - k21 (x 2 - xl) (5.7.2) 

-[dp + ~ (1x2+ x 2)](X 6 +A W x 4 - ux 4 ) 
D 2 4 P R 

- [kp + ~K(Ix~ +x~) - YA~W~]x2 ' 

*7 -dX 7 -k l x 3 -k I2 (x 3 -x4 ) +mrw~sinwRt, 

*a 2YApWRx 6 -k2x 4 -k 21 (x 4 -x 3 ) - [dp +~D(Ix~ +x~) ](xa -

-A W x 2 +ux) -[k +~ (/x 2 +x 2 ) -YA zW2 ]x 4 • 
PR 2P K 2 4 PR 
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In the above AF ~ A (,Ix 2 + x 2 ) is a nonlinear decreasing function of 
F 2 ~ 

shaft eccentricity with AF(O) ~ A~, and the control variable is specified 

by a program P(·) which depends not only upon the vector x = (xl"" ,Xa ) T 

but also upon the air pressure A , which may be either a given constant, 
p 

as assumed at the moment, or an adaptable parameter, as discussed later. 

The equilibria are established by the equations 

-klx l - kl2 (xl -X2) 0, 

- k 2x 2 - k21 (X 2 - Xl) - (kF + l/JK - YA:W~) X2 o , 
(5.7.3) 

-k l x 3 - kl2 (x 3 -x~) 0, 

-k2x~ -k21(X~-x3) - (kF+l/JK-YA:W~)X~ =0. 

Note that l/JK(Ix~ +x~) , A (/x2 +x2) are "hard" and "soft" nonlinear 
F 2 ~ 

functions of the eccentricity, respectively, thus with negative -YA:W~ 

we expect the bracket to be positive, see Fig. 5.23. We conclude that 

there is only one equilibrium at the origin of the state space, which means 

no energy thresholds and the cup about such equilibrium covering ~. This 

is immediately confirmed if we calculate the potential and kinetic energies. 

Granted the natural assumption kl2 = k21 ' we have 

V= 

The power characteristic f o (') is then determined as 

fo(x,u,t,wR,AF ) = mrw~(x5 coswRt + x 7 sinwRt) - d(x~ +x~) 

- (dF + l/Jo)[(x~+x!) + (AFWR-u)(x~x6-x2xa)J, 

wi th WR ' AF appearing as system parameters. 

(5.7.4) 

(5.7.5) 

} (5.7.6) 

If the system were linear: l/Jo :: 0, tPF :: 0 , AF =- 1. 5, then the 

stability of the basic equilibrium might have been qualified similarly as 

for the equation (3.1.4), by eigenvalues of the system matrix A having 

negative real parts - the matrix being thus stable, see Section 3.1. It 

may be shown that the real parts of eigenvalues remain negative up to a 

certain value of WR = w~T, which thus forms the wR-based stability 

threshold, see Muszynska [2J: 
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1 
1.5 

(5.7.7) 

such that for WR ~W~T we obtain exponentially increasing amplitudes of 

the linear systems, and the described whirl phenomenon should appear nearly 
ST 

above WR for the nonlinear system. We may thus propose to control the 

system for capture below some E-level within the basic cup, the level being 
ST 

wi thin the stipulated distance oh above that corresponding to wR • To 

attain this objective, we use Proposition 4.1.1 and Corollary 4.1.1 with 

fo specified by (5.7.6). 

Let us set up a candidate/::'o with ho defining (M o reasonably high, 

close to a/::'o Then, for control condition, we use the dissipative (5.5.9) 

with (5.7.6) substituted: 

(5.7.8) 

wi th hTC such as to make the aT c level above that specified by w:T by 

a suitable oh. Oeleting the negative terms from (5.7.6) the dissipative 

control condition reduces to the following: 

mrw~ (x s cos WRt_+ x 7 sin wRt) - (dF + ljio) O'FwR - u) (x 6 x" - x 2 x a) 1 
(5.7.9) 

- - (h o - hTC) ITC 

Hence the control program implying (5.7.8) may be designed in the follow

ing format: 

u (t) = [11 (dF + ljio) (x"x 6 - x 2 x a) ]{[ - (h o - hTC) ITC] 

+ (dF + ljio) (X6 x 4 - x 2 x a) AFWR - mrw~ (x s cos wRt + x 7 sin wRt)} 

for I Xi I > Si' and 

u(t) i 5,6,7,8 • 

(5.7.10) 

In the above, S. 's have the role as described in Section 3.3 and can 
~ 

be calculated in the same way. Obviously we could have left the negative 

terms of (5.7.6) in (5.7.9) and thus in (5.7.10), then however the control 

effort would have to increase, and moreover (5.7.9) would have to be left 

as an inequality, and so would (5.7.10). For a small mass-imbalance m or 

when the effect of imbalance is minimal, say at high whip, we may delete 

the last trigonometric terms in (5.7.10), whose only role is to cancel the 

perturbation generated by imbalance. In the latter case, as well as in a 

number of other features appearing at different values of WR and AF we 
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may see the parametric role of these variables and thus the possible need 

for adaptive control programs. We discuss this topic later in the text. 

The control program (5.7.10), or in any other format of fluid dissi

pative algorithm, is implemented by air jets located in the stator of the 

bearing which introduce a backward circumferential (reverse) flow into 

the bearing clearance. As mentioned, u(t) is the tangential component 

of the average velocity of such a flow. The jets start acting on some 

pre-set value of the monitored amplitude of the lateral vibrations which 

is related to our pre-set energy level h o ' They switch themselves off 

at another amplitude corresponding to the level of aTe' There is no need 

to 'use the accumulative controller for forcing the motions to Te from 

below as this is done automatically by the unbalanced'rotor. 

Simulation results implementing the controller (5.7.10) have been 

obtained using the following data wR = 209 rad/sec, WK = 4000/ (1 _ e 2 ) 3, 

with e = Ix~ +x~, kF = 0, WD = 40/(1_e2 )2 d F 0 

AF = 0.48(1-e2) 1/5 d = 4.0 R,b sec/in m 6 R,b, r = 1.2 in, 

y = 0.5 and the stiffness coefficients kl 2000 R,b/in, k2 = 10,000 

R,b/in, k12 = 1000 R,b/in The corresponding motion components may be 

seen in Figs. 5.25, 5.26. Observe that the time taken for the motion 

between the initial energy level h O to hT is approximately Te = 8 sec 

6 

1 2 3 4 5 6 7 8 
t ~ec. 

Fig. 5.25 
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5.8 CONDITIONS FOR RENDEZVOUS 

We shall now look closer at the case when the system fails to attain 

capture in some target T. More precisely, we shall consider the systems 

which are strongly controllable at some xO E ~ for collision or penetra

tion without capture in T, which occurs if and only if such a system is 

strongly controllable at xO for collision or penetration, and for each 

P ( .) that wins this objective, there is w ( .) which denies capture, as 

specified by (5.1.13) of Definition 5.1.5. 

The corresponding region of such strong controllability is denoted 

~t. By the definitions of the objectives concerned, such a region is 

the complement of ~C to either ~C or ~z ' see (5.1.16), and encloses 

the noncapturing part of T, namely T t !l!. T - ~C • 

Consequently to the above, conditions sufficient for strong controll

ability for collision or penetration without capture reduce to Conditions 

5.3.2 for collision or Conditions 5.3.5 for penetration accompanied by 

contradicting (5.5.2) of Conditions 5.5.2 necessary for capture. Hence 

there is no need for separate formalization of conditions for collision 

or penetration without capture, unless we want a specified subcase of such 

an objective which is the rendezvous, see (5.1.13) in Definition 5.1.5, 

and Fig. 5.27. 
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Fig. 5.27 

To establish attention, let us consider the collision with rendezvous. 

From Definition 5.1.5 it follows that there is a proper subset Tz of T 

consisting of points where the rendezvous takes place. Obviously Tz c T, 

as much as the strong region for rendezvous I:::. z c 1:::., = I:::.c - I:::.r . It is 

easily seen also that, given Tz and taking it as a target, the region of 

strong controllability for collision with T z is the region !':.z. This 

makes the methods of Section 5.4 immediately applicable for determining 

!':.z· 

TZ = 

that 

Clearly !':.z n Tz t- <P and Tz c !':.z n T, see Fig. 5.26. If 

I:::. z n T, we may have Tz <P yielding collision without rendezvous, 

is, rejection, see Section 5.1. 

Similarly as with capture, we attempt to force the motions of 

K -0 -0 A T (x , to), (x, to) E Llo X JR into Z but now require that they stay in 

T only for TZ ' This is secured by the following conditions introduced 

in Skowronski [38J. 

Fig. 5.28 
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As before, we stipulate candidates TZ ' D. o ' with the options 

D.o = D.C ' TZ = T~ if /::'C' /::'C 

tions to verify the candidates. 

and consider a Cl-function V(·) 

are known. Then we need sufficient condi

Denote CTz ~ /::'0 - Tz , see Fig. 5.28, 

Vz = sup V(x) Ix E a/::, 0 ' 

v TZ = inf V(x) Ix E aTz ' 

vT = inf V(x) Ix E aT • 1 

: D +~ with D(open) ~ /::'0 (or 

(5.8.1) 

CONDITIONS 5.8.1. The system (2.2.6)' is strongly controllable on D.o for 

collision with rendezvous in T,- if given T Z C T there is P ( . ) de fined 

on D x ~ and V ( . ) of above such that 

(i) V(x) !> for - CTz Vz x E 

(ii) V(x) > vTZ , for x ~ TZ 

(iii) V(x) !> v T , for x E T t ; 

(iv) for any (x,t) E CTz x~, ~(.) E K(x,t), u E P(x) 

there is a positive constant T < 00 such that 
c 

to + T J c [IlV(x)T.'[(x,ii,w,t)]dt!> -(vz -vTZ ) 

to 

for all W E W 

(v) for all (x,t) E T,: x ~, ~(.) E K(x,t) 

there is a constant Cz > 0 such that 

o < IlV(x)T'[(x,ii,w,t) < c z V W E W . 

If /::'C is unknown, T~ in (iii), (v) must be replaced by T. 

(5.8.2) 

(5.8.3) 

By conditions 5.3.5, (i), (ii) and (iv) imply strong controllability 

on /::'0 for collision with T Z. It remains to show that no motion from T Z 

may stay in T indefinitely or leave before Tz . 

The first assertion follows as an immediate conclusion from (iii) and 

the fact that by (v), V(~(t» > O. To show the second, consider an 
- - 0 arbitrary motion ¢(.) from Tz leaving T at t z ;:>: to: ¢(x ,to,tz) 

= x Z E aT. Due to collision it must have entered Tz at some 

t 
c 

the time estimate 

Xl E aTz . Integ~ating (5.8.3) we obtain 
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(5.8.4) 

Letting 

(5.8.1) implies t2 - tl ~ TZ which proves the hypothesis. 

Observe that as TZ depends upon c z ' which is the upper bound of 

the rate of change of V(~(t», it can be called the measure of slowing 

down in T,. We have 

(5.8.5) 

with v TZ - V(xo) ~ 0 by (ii). Given Tz ' we may design Cz suitable for 

the required duration TZ . Alternatively, given the rate bound Cz the 

candidate Tz may be adjusted to fit the time TZ . Indeed 

TzCZ = vTZ - V(xo) ~ 0 (5.8.6) 

provides the condition for such adjustment. As mentioned in Section 5.1, 

the rendezvous becomes capture when TZ + 00. Indeed then, in view of 

(5.8.5), we have Cz + 0, and the condition (5.8.3) must be replaced by 

V < 0 implying capture. On the other hand, removing the slow-down 

restriction Cz < 00, that is, letting Cz + 00 implies Tz + 0, that is, 

collision without rendezvous. In conclusion, similarly as before, we have 

the following corollary. 

COROLLARY 5.8.1. Wh.en all o ' aT , aTz are speaified by v-l-evel-s, the aon

ditions (i)-(iii) hol-d automatiaal-l-y, and (iv), (v) beaome necessary as 

well as sufficient for aoUision with rendezvous with T. 

Suppose now that TZ is stipulated. The corresponding Tz(TZ) will 

depend upon TZ and obviously may differ from T Z even for the same TZ . 

Moreover, we have Tz(T~) c Tz(T~) for any two T~, T~ such that 

T~ ~ T~. '!'he corresponding region is denoted by llz (TZ). It is the same 

as the region of strong controllability for collision with Tz(TZ) which 

gives the method for its determination. Obviously 

Tz(TZ) and thus also to TZ : llz(T~) c llz(T~) for 

is related to 

T ' ~ T" H Z Z . ence, 

capture with its TZ + 00 gives the lower estimate for all Tz , llz : 

Tz(TZ) :> Te' llz(TZ) :> lle' for any TZ · 

CONDITIONS 5.8.2. '!'he system (2.2.6)' is strongly controllable on llo for 
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collision with rendezvous in T during TZ ' if given Tz (TZ) the Condi

tions 5.8.1 hold with (v) replaced by: 

(v)' for all (x,t) E Tr; x lR, u E P{x,t) , we have 

o < 'i7V{x)·f{x~t,u,w) 

The proof follows from Conditions 5.8.1 by setting up 

vT - vTZ 

(5.8.7) 

(5.8.8) 

The min-max and L-G controllers are obtainable by the same methods as for 

collision or capture, from the conditions (5.8.2) and (5.8.3) or (5.8.7), 

via the corresponding corollaries. In order to imply (5.8.2) for the 

collision subobjective, we can use the controller obtained from Corollary 

(5.3.2) during some or stipulated Tc' then switch the controller to that 

implying (5.8.3) or (5.8.7) for the rendezvous subobjective. For the 

latter purpose, we use the following corollary. 

COROLLARY 5.8.2. Given (x,t) E/::"O XlR, if there is a pair 

(u*,w*) E U x w sueh that 

vT - vTZ 
min max L{x,IT,w,t) ~ -

IT w TZ 

then (5.8.3) or (5.8.7) are met with u* E P*{x,t) 

(5.8.9) 

The corollary allows us to design the controller for rendezvous. It 

is obviously highly desirable that it is the same controller as for the 

collision subobjective, thus eliminating the switching after Tc 

5.9 AEROASSISTED ORBITAL TRANSFER 

To illustrate our theory on maneuvering between targets combined with 

rendezvous, let us consider a case of aeroassisted orbital transfer for 

the presently developed aerospace plane diving in the uncertain atmosphere. 

The transfer refers to the change from a high Earth orbit (HEO), which is 

exoatmospheric, to capture in a low Earth orbit (LEO). It allows for an 

unpowered rendezvous flight in the atmosphere with significant fuel saving, 

see Talay-While-Naftel [lJ and Mease-Vinh [IJ. The controller for such a 

rendezvous must be robust against large uncertain fluctuations in atmos

pheric density (potholes), reaching up to 40% according to the STS-6 Space 
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Shuttle data. The optimizing candidate p*(.) for such a transfer has 

been designed by Grantham-Lee [lJ, based upon the minimum fuel consumption 

before reaching LEO. We shall rely heavily on the model studied in this 

work, augmenting the objective by some qualitative features. 

The plane is modelled by a point-mass, and the transfer is investi

gated in the Cartesian plane Oxz with origin at the centre of the Earth 

and the two concentric orbits BEO and LEO, see Fig. 5.29. The scenario 

assumes an initial tangential retro-thrust at BEO with radius r j • The 

first stage is to decrease the velocity by -OV j and to position the plane 

on an elliptical orbit with perigee at the boundary of the atmosphere with 

radius R. The atmosphere is a Cartesian ball-shape target T: r ~ R , 

the idealization good enough for our purpose. 

&V2 
THRUST 

Fig. 5.29 

RETRO-THRUST 

It is expected that flying in the atmosphere a certain amount of 

kinetic energy will be converted to heat by drag and thus lost, producing 

outflux. If the plane were to fly along aTz ' that is, without penetra

tion, it would obviously do it at minimum density with drag tending to 

zero, whence a suitable finite out flux would be produced in indefinite 

time. To avoid this, we need penetration and in fact the depth of it oh 

can be specified by the desired outflux 

or = oh = J fo(x,u,w)dt 
TZ 

(5.9.1) 

with the integral taken along the trajectory concerned over desired time 

interval Tz ' The latter is stipulated due to the constraint that the 

plane should make less than one revolution in T. After a suitable out

flux of energy, the plane leaves T tangentially with zero lift and 

climbs in an elliptic orbit with apogee at LEO radius r 2 where the cap-
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turing circular orbit is attained by a tangential circularizing burn 

which increases the velocity by 8v 
2 

The geometry of the atmospheric flight is shown in Fig. 5.30. Our 

investigation refers to the radius r (t) , velocity v (t) and the path 

angle y (t) of the vehicle, independently of its angular position e so 

that, taking the lift and drag forces modelled successively by 

D (5.9.2) 

the equations of motion for the atmospheric flight reduce to the three

dimensional system 

r V sin y , 

) (5.9.3) v - (pSCDV 2 12m ) - (MG/r 2) sin y 

vy = (PSCLV2/2m) -I (MG/r2) - v 2 Ir J cos y 

Fig. 5.30 

In the above equations, CL , CD are the (angle of attack dependent) lift 

and drag coefficients, see :ection 4.3, with CD = CDO + KC~ where 

CDO = CD at CL 0 and CL is the CL measured at [CL/CDJmax = +IKCDO • 

Moreover S is the effective surface area normal to the velocity vector, 

M and m are the masses of Earth and the vehicle, respectively, G (r) is 

the variable Newtonian gravity coefficient, while p(t) E [p,PoJ is the 

uncertain atmospheric density with p = p at r = 40 km and p = Po at 

r = ~. The entry and exit values of v, y into 

and out of the atmosphere must satisfy the conditions derived from the 

conservation of energy and angular momentum outside the atmosphere, see 

Grantham-Lee [lJ: 

o (5.9.4) 

A 2 2 
2r 2 + vEX cos YEX o (5.9.5) 
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where r. = ri/R are the nondimensional radii, with the entry and exit 
1. 

velocity changes av. expressed in dimensionless terms as 
1. 

aV l 11/£1 (vEN/r 1 ) cos YEN (5.9.6) 

aV 2 h/r2 (vEx/r 2 ) cos YEX (5.9.7) 

We shall now determine conditions for designing the controllers, and 

to do so, we need the state model. Let ~ be the idealized Earth radius 

and let h = r - ~ be the altitude of the vehicle, with hE = R - ~ 

being the entry/exit altitude in and out of the atmospheric ball. We 

choose the dimensionless state variables 

Y 

The targets and controllable sets are seen in Fig. 5.31. 

X1 (ALTITUDE) 

HEO~----~~--~----~~~----~ 

LEO~--~~~--~~----~------~ 

3 
(PATH 
ANGLE) 

Fig. 5.31 

FL HT 
ENVELOPE 

(VELOCITY) 

(5.9.8) 

The trajectory leaving REO is an exoatmospheric descent with no air 

density, thus without lift and drag, as well as without uncertainty. Thus 

the energy outflux is produced totally with the power of the controlling 

retro-burn, the latter assumed to be an impulse force with constant value 

and short duration. Consequently to all the above, we may attempt to find 

a control condition implying (5.8.2) directly, instead of using a suitable 

corollary. 

- ~ ) 1 2 It is convenient to take vex) = E(x 1 ,x 2 + 2 x 3 ' with the dimension-

less E (x1 ,x2 ) = t (x~ + x~) = (h 2 /2h~) + (V 2 R/2MG). We start at REO: 
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Xl = (r 1 -~) /hE , but the initial V-level depends also upon the initial 

velocity V O = V(t o) , which should be large enough to accomnodate -OV l 

Given V O we can specify Lo covering it, by the corresponding V-level: 

(5.9.9) 

The collision stage ends when the trajectory reaches T = Tz = Tc at 

aT : xl = 1, x 2 = VEN/IMG/R, x3 = YEN. Horizontal entering of the 

atmosphere: YEN = 0 is fuel consumption optimal, but we must allow for 

some YEN = const > 0 in order to generate a lift. Such YEN substituted 

into (5.9.4) gives VEN . With the latter two, we calculate 

vT = vZT ={inf[E(x l ,x 2 ) + +x~Jlx € aT} ) 
The collision time interval Tc is then estimated by 

T 
c 

2: 
r l - R 

i-OV l i 

Thus (5.8.2) becomes 

t + T 
U J 0 c x 2dt < ( ) - - Vz - v TZ 

to 

(5.9.10) 

(5.9.11) 

(5.9.12) 

with the constants specified by (5.9.9), (5.9.10), (5.9.11). Condition 

(5.9.12) forms the control condition for collision. 

For the flight within the atmosphere, we use (5.9.3) in the state 

format. Substituting (5.9.8), introducing the dimensionless parameters 

f::, r.=-=)h ~ f::, A f::, h 0 f::, A A T = (tvMG/R E; U = p/p; c = R/ E; -t.. = pSRCL ' (5.9.13) 

A 

and adding the lift control variable u = CL/CL to the uncontrolled (5.9.3), 

we obtain the state format, see Grantham-Lee [lJ: 

.to 
2[L/DJ 

max 
(1 +u )x (5.9.14) 

where (0) denotes d (.) /dT. The control values are bounded by the thrust 

constraint I u I ::; u and the uncertainty 0 (t) is bounded by the bounds 

corresponding to Po' P, namely 0 € [I, (Po/p) J. In order to use Coroll

ary 5.8.2, we calculate 
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L(x,ii,w) 

Then the condition (5.8.9) becomes 

min max 
u 0 

substituting the maximizing 0* and minimizing 0* we obtain the control 

condition for rendezvous in T: 

} 
(5.9.15) 

In the above C z is estimated by Oh/TZ ' where oh is the desired outflux 

of energy (5.9.1) between the E-level of entry and the E-level of exit into 

T. As mentioned already Tz is determined by the demand of less than one 

revolution about Earth in T. After TZ an extra burn produces the velocity 

increase OV 2 for reaching LEO. The vehicle again should leave horizontally, 

but small YEX = const > 0 is needed in order to climb out of the atmos

phere T. Given YEX,we calculate VEX from (5.9.5). Then the exit V-level 

is obtained as 

V(x) = v TEX = ~ + v 2 R/2MG + ~ y2 2 EX 2EX· (5.9.16) 

The mentioned oh for C z may be expressed in terms of vT - vTEX from 

(5.9.10) and (5.9.16). 

The next target is the capturing TC which is defined by the LEO I S 

altitude and the kinetic energy corresponding to V = VEX + OV 2 ' as well 

as the convenient limiting Y = 0 : 

::; n} . (5.9.17) 

In the above n > 0 is a secure bound for admissible deviations of the 

state variables from the trajectory desired at the LEO stage. The flight 

to LEO is again exoatmospheric with no air density and thus the same 
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features as for the descent from REO. This time, however, we are ascending 

in both the Cartesian space: R;f R2 , and the state space with respect to 

E-levels (increasing velocity as well as altitude). Consequently, follow

ing the discussion in Section 5.5, when using the capture generating 

Corollary 5.5.3, we must adopt it to energy accumulation and apply the con

trol condition (5.5.10). This requires adjustment in the test function: 

we take Vc(x) = v TC - Vex) , where vex) is the function used so far, with 

(5.9.18) 

The capture time is then estimated by 

(5.9.19) 

and the control condition becomes 

(5.9.20) 

After reaching T C the controller is switched off and the vehicle follows 

the orbit under the conservative steady state regime. Observe that QV2 

enters (5.9.18)-(5.9.20) as a desired quantity to which the constant burn 

u is adjusted and from which the time of flight (5.9.19) is estimated. 

Consequently there is little chance for an overshot beyond the secure n 
of (5.9.17) and we do not have to consider another controller securing the 

avoidance of orbits higher than LEO, that is, stabilizing the trajectory 

from above. 
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Chapter 6 

AVOIDANCE 

6.1 AVOIDANCE RELATED OBJECTIVES 

In applied control avoidance of obstacles, stationary or moving, is as 

important as attaining collision or capture, and perhaps more so. When the 

obstacles are controlled by the same agent, the avoidance control may be 

part of coordination. When they are controlled by an independent agent, 

the scenario may become an evasion part of a dynamic game, and when such an 

agent does not have an objective on his own but simply acts to interfere 

with ours, the game becomes a game "against nature" or against uncertainty. 

The conditions for avoidance have been for a long time, and often still are, 

obtained by contradicting the optimal collision, that is, in quantitative 

terms, for instance by maximizing the minimal time or distance of collision 

in an attempt to make it tending to infinity, cf. Isaacs [lJ. Such a 

technique simplifies the rather complex objective of avoidance to non

collision, thus fails to satisfy many applied case goals such as avoid-

ance in finite time, ultimate avoidance, collision with one target while 

avoiding another, to name only a few from many possible scenarios which 

include avoidance as a modular subobjective. Moreover, such a simplified 

quantitative objective is studied via necessary conditions which, apart from 

producing unconfirmed results, require numerical integration even for 

systems of low dimensionality (:;; 3) so that only particular cases could be 

discussed. 

The problem of avoidance, independent from collision, was first posed 

by Blaquiere et al [lJ, Aggarwal-Leitmann [lJ and later in terms of necess

ary conditions by Vincent [lJ,[2J. Sufficient conditions for strong 

controllability for avoidance were introdiced by Leitmann-Skowronski [lJ 
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and Getz-Leitmann [lJ, followed by a number of works appearing soon after

wards, like Chikriy [1], Yeshmatatov DJ, Litmanov DJ, Ostapenko [lJ, 

Schroeder-Schmitendorf [1J, Barmish-Schmitendorf-Leitmann [lJ, Schmitendorf

Barmish-Elenbogen ell, Leitmann [5J, Leitmann-Liu [lJ, Leitmann-Skowronski 

[2J, Kaskosz [lJ,[2J, Foley-Schmitendorf [lJ, Gutman [4J, Shinar-Gutman 

[lJ and Krogh [lJ,[2J, to quote orly those referring to nonlinear systems. 

In Section 1.6 we have discussed tr,e models of anti targets TA in the 

Cartesian space and their transformation to configuration and velocity 

antitargets T ,T., 
Aq Aq 

respectively, in the state space, forming the state 

space antitarget T A as the Cartesian product T XT.=TAC!:1. 
Aq Aq 

Since 

anti targets, both Cartesian and state, can have odd shapes, we often must 

envelop their union in some avoidance set A in state space, equipped with 

a smooth boundary for convenience of handling the avoidance problem. 

Usually A is also a closed set in L, but not necessarily connected. It 

would have the property that, given a control program P(·) , no motion of 

(2.2.6)' may enter it, no matter what value of the bounded uncertainty is 

applied. This obviously satisfies the requirement for complete avoidance 

for all + t E R This requirement may be scaled down as we shall see 

below. 

Let L be the closure of an open subset of L such that L :0 A and E 
L 

E 
(ME n ClA ¢ We shall call LA = LE - A the safety zone, see Fig. 6.1, 

and define cA~L-A. The objective of avoidance is then specified as 

follows. 

DEFINITION 6.l.l. A motion of (2.2.6)' from outside A avoids this set if 

and only if there is LA such that (xo, to) E cA x JR implies 

¢(xO,to,JR) nA=¢ (6.l.1) 

A 

------------~ 

Fig. 6.1 
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The above also means that there is no finite interval of time during 

which ~ ( .) collides with A. 

The definitions of controLLabiLity and strong controLLabiLity for 

avoidance follow from Definitions 3.1.4 and 3.1.5, respectively. Since 

b.A surrounds A by definition, if b.A is controllable or strongly con

trollable for avoidance of A, so is the whole b.. Thus the region equals 

b. and the controllabilities are automatically complete and global. We 

have 

<P (CA XR, lR) n A (6.1.2) 

EXAMPLE 6.1.1. Consider the kinematic equation 

q = u cos q + w sin q (6.1.3) 

with q € :R, control constraints u € [-l,lJ, w € [-l,lJ and with the 

antitarget = avoidance set A = {a} in Fig. 6.2. The control u = 1 wins 

q.>o 
~J\~I ____ ~.--__ ~ __ ~~~--------------~~ ~ 

o % 
I--- t:..A -----l 

Fig. 6.2 

strongly for all q € [O,rr/4) generating q > 0 without a chance of any 

effect by the action of w, even if it uses its best option w = -1. SO 

b.A [O,rr/4) is the safety zone and it is easily seen that this way all 

qO ~ TI/4 may not generate a trajectory entering A which makes the region 

of strong controllability equal to [TI/4,oo) and the controllability com-

plete and global. o 

While A is given (desirable), its neighborhood may not be large 

enough or well defined enough to form the safety zone about it. For 

instance, envisage the collection of anti targets stretching to infinity 

while b. is bounded. Then there is a "leak" in b.A at the intersection of 

ab. with some anti target. Thus it may be convenient to narrow the defence 

to A itself: make a'A ~ aA n int b. the safety zone and avoid intA. 

This way we come to the concept of repeLLing. 

DEFINITION 6.1.2. Given (xo ,to) € cA x lR, a motion of (2.2.6) I is 

repe Ued from A if and only if 
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~(xo ,to ,R) n int A = cp • (6.1.3) 

The motions of controllability and strong controllability are formed anal

ogously to those of avoidance, that is, from Definitions 3.1.4 and 3.1.5, 

and by the same argument, these controllabilities are always complete and 

global. 

Obviously the concept of repelling may refer equally well to cA, and 

hence to both 

Al, ..• ,A'l, 

and uoAO 

'l < 

int A and cA at the same time. Generalizing it, we let 

00 be a sequence A of subsets of A such that n AO = cp o 
A, 0 = l, ... ,'l, representing an avoidance aT'chipelago, see 

-0 
Fig. 6.3, and B = n~ the T'epelling mesh, invariant under a given con-

trol. 

Fig. 6.3 

In many situations of practical interest, the above requirement of 

avoidance for all time may be unduly restrictive and costly. In particular 

avoidance during or after a specified finite time interval may well suffice. 

It is called T'eal-time and ultimate avoidance, respectively. We now let 

/::,£ depend upon x o As before /::,£(xo) :::> A and a/::'£ (xo) n aA = cp, but 
-0 '\A -0 "A also x € ou£(x ) , that is, we consider motions starting from ou£ 

Then the safety zone also depends upon XO which we write as /::'A (xo) 

~ /::, (xo) - A, and becomes a slow-doutn zone instead. 
£ 

DEFINITION 6.1.3. Given x o € cA, a motion of (2.2.6) I avoids A in 

time if and only if there is TA < 00 such that 

T'eal 

~(xO,to,t) n A cp , V t € [to,to+TAJ (6.1.4) 

stipulated 
+ have avoidance dUT'ing + 

For T we T 
A A 

Here again the motions of controllability and strong controllability 

are formed from Definitions 3.1.4 and 3.1.5, respectively. 

A specific 

pending a/::'£ (xo) 

T: < 00 marks the time passage between x O on the corres-

and aA • It can be now called a slow-down time. Let 

291 



www.manaraa.com

(6.1.5) 

be the distance between xO and A while 11·11 is any norm in lRN , and let 

+ tJ. (-0 A) TACA = P x , 
+ c A > 0 being the safe rate of approach to A during TA . 

+ + 
Given cA ' the corresponding safety zone tJ.A (TA) depends upon TA , and 

may be called a slow-down zone. The region of strong controllability, 

still being 

to the zone 

tJ., encloses such a zone, and for a different T+ the complement 
A 

ctJ.€ (xo) = tJ. - [tJ.A (T~) u AJ is different: T~:<: T~ implies 

(6.1.6) 

for any two T~, T~. This agrees with the fact that the (infinite time) 

avoidance of Definition 6.1.1: T+ ~ 00 implies any real time avoidance. 
A ' + 

Indeed CtJ.€(OO) is the smallest of all CtJ.€(TA) which complements 

This, on the other hand, means that the tJ. corresponding to such 
€ 

is the largest, and in the limit equals I:!. , which has been specified as the 

region for indefinite time avoidance. 

Finally we turn to the ultimate avoidance, that is, avoiding A after 

a certain finite interval of time, which again may be left unspecified and 

perhaps determined afterwards or stipulated, see Fig. 6.4. 

Fig. 6.4 

DEFINITION 6.1.4. Given -0 (x ,to) E I:!. XR, a motion of (2.2.6) I ultimately 

avoids A if and only if there is T",4 < 00 such that 

- -0 n A <P V t :<: to + TA (6.1. 7) <p (x ,to ,t) , 

For TA stipulated, we qualify the objective as ultimate avoidanae after 

TA • It is easily seen that ultimate avoidance covers the case of a finite 

time esaape from A, which may be specified by an additional requirement of 

xO EA. 

Since the motions must either stay out of A all the time or leave it 

before the time to + TA , the complement cA must be strongly positively 
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invariant under the P(·) concerned. There is no need in this case for the 

safety zone, neither the need to narrow the controllabilities to any region 

smaller than tJ., so they are complete and global. 

A few illustrative examples are provided in the next section. 

6.2 CONDITIONS FOR AVOIDANCE 

The essential features of avoidance control lie in designing a suitable 

feedback controller and defining the safety zone. Both can be found from 

the set of sufficient conditions we ~onsider below, see Leitmann-Skowronski 

[1]. 

CONDITIONS 6.2.1. The system (2.2.6)' is completely strongly controllable 

for avoidance of A, if there is a safety zone tJ.A , P(·) defined on tJ.A , 

and a Cl-function v(·) 

(x,t) E 6A x lR , 

DA (open) ::> tJ.A , such that for all 

(i) V(x,t) > V(I;,T) I; E ClA, T ~ t 

(ii) for each u E P(x,t) , 

Clv(x,t) T -
Clt + VxV(x,t) ~f(x,il,w,t) ~ 0 (6.2.1) 

for all W E W . 

Indeed, suppose some iii ( .) E K(xO,t o ) , -0 i A, enters A Then x 

there is tl > to such that 
- -0 
cj>(x ,to,t l ) = xl E ClA and by (i) , 

-0 
V(x ,to) >V(xl,t l ) contradicting (ii) and proving the conditions. 

Similarly as in all the cases of collision and capture, Conditions 

6.2.1 have an immediate corollary which may produce the controller. 

Recalling that 

tJ. ClV(x,t) T -
L(x,u,w,t) Clt + I7xv(x,t) ·f(x,il,w,t) 

we have 

COROLLARY 6.2.1. Given (x,t) E 6 A x lR, if there is a pair (u* ,w*) 

E U x W such that 

L(x,u*,w*,t) = max min L(x,il,w,t) ~ 0 , 
u w 

(6.2.2) 
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then (ii) of Conditions 6.2.1 is met with u* € P*(x,t) and it may be 

possible to deduae the winning aontrol program from (6.2.2). 

The proof of the corollary follows immediately from the fact that 

max min L(x,u,w,t) ~ max L(x,u,w,t), V w € W 

For the game case, the above result has been proved slightly later by 

Litmanov [lJ. 

REMARK 6.2.1. Observe that the proving argument for Conditions 6.2.1 does 

not change if the inequality in (i) is made weak and that in (ii) made 

strong. 

.' REMARK 6.2.2. OWing to the continuity of V(·) and the continuity of ~(.) 

with respect to initial conditions, the test derivative L(x,u,w,t) in 

(ii) could have been defined on aA only, with the same effect. 

We may also note that the proving argument for Conditions 6.2.1 again 

does not change when the test function V ( • ) is assumed stationary. 

CONDITIONS 6.2.2. The system (2.2.6) I is completely strongly controllable 

for avoidance of A, if there is /:;A' P (.) 

function V (.) : DA -+ lR , DA (open) ::> t,.A ' 
(x,t) € l:J.A x lR , 

(i) V(x) > v+ = sup V(x) I x € aA , 
A 

(E) for each u € P(x) , 

VV(x)T.f(x,u,w,t) ~ 0 , 

defined on /:;A' and a Cl _ 

such that for all 

(6.2.3) 

As for Conditions 6.2.1, upon entering A by some ~(.) € K(x o ,to) , 

x O t A, there is tl > to such that ~(xO,to,tl) = Xl € aA generating 

contradiction between (i) and (ii) of the above. 

The Corollary 6.2.1 holds for the stationary V ( .) without change, 

and we have another immediate conclusion. 

COROLLARY 6.2.2. When the a:voidanae set A in Conditions 6.2. 2 is defined 

by the v-level: 

aA : V(x) = v~ (6.2·4) 

294 



www.manaraa.com

then (i) of Conditions 6.2.2 hold automatically and (ii) becomes also 

necessary. 

Indeed, if not (ii), then V < 0 generating collision. 

Conditions 6.2.2 have been introduced in Skowronski [38J. They work 

better for our type of application, since the energy E(x) is taken, as a 

rule, stationary. Moreover, with a choice of V ( . ) in terms of energy, 

the conditions are necessary and sufficient, thus defining the fields of 

avoidance and collision in terms of the map of H+, H- options for the 

controller. 

Observe that Corollary 6.2.1 provides an accumulative controller. 

This, in our energy reference frame, means rising in E-levels away from A, 
which surrounds antitargets that have replaced the targets of Chapter 5. 

Such a controller works as long as we intend to avoid an E+-level below us, 

that is, avoid from above. The situation is in fact the same as in 

stabilization above some E+-level in Section 3.3, or collision/capture in 

a target located above the initial E-level, in cA, with the methods of 

Sections 5.3, 5.5. In each case we satisfy (6.2.2) using the accumulative 

control condition (3.3.17). When the situation is reversed, that is, when 

we want to avoid A which is located above the initial E-level, that is, 

avoid from below, for instance avoid thresholds while in the energy cup, 

we use a dissipative controller to damp the motion energy below some 

E--level, that is, again away from A with the same control condition as in 

Chapter 5: (5.3.7), (5.3.11) or (5.3.14) specified as in (3.3.12) '. 

Indeed, observe the following. 

REMAr0Z 6.2.3. The proving argument for Conditions 6.2.1 and 6.2.2 remains 

valid when the inequalities (i) and (ii) are simultaneously reversed. 

This remark automatically applies to Corollary 6.2.1 as well as to the 

controller implementing it. However, two comments must be made. First, 

when inverting the inequality (6.2.2), u* becomes the minimizer while w* 
is the maximizer, as in collision. Second, inverting the inequalities 

while still applying the energy reference frame, we must let a new test 

function V(x) = const - E-(x) or V(x) = l/E-(X) , as both of them change 

the sign of the derivative. Alternatively, we may use the latter functions 

in Conditions 6.2.2 and return back to V(x) = E-(x) for avoiding A from 

below. 
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The discussed specification of the H+, H- fields in service of 

avoidance is, for instance, used in robotic practice where the test 

functions V(x) ~ const - E(x) , l/E(x) are called the breaking or push

off potentials and located by design about obstacles. They work in lieu 

of vision, representing a less expensive alternative, see Khatib-LeMaitre 

[lJ. Indeed, robotics raised considerably the interest in the artificial 

push-off potential fields. We may immediately quote the abovementioned 

and Khatib [lJ, Khatib-Burdick [lJ, Koditchek [lJ, Krogh [2J, Newman-Hogan 

[lJ, Volpe-Koshla [lJ, to name only a few. 

The standard way of using the push-off or repulsive potential is to 

insert it into the potential energy reference surface V of the system, 

usually within the energy cup, generating a local maximum on V, integrated 

smoothly into this surface. Spherical symmetry is a typical feature of the 

repulsive hill, see Koditchek [lJ. The hill may increase cubically with 

radial distance inside of a circular threshold range. Some hills have 

gaussian shapes. In general, these hills should not create local minima 

about them, see Volpe-Khosla [lJ. However, there are a few relatively 

popular repulsive functions which do so. One of them is the so called 

FIAAS function 

V(r) 

where r is the closest distance of the object surface, r 0 is the effective 

range and A is a scaling factor. To avoid the minima, the potential must 

be circular (in two dimensions), but the circular potential will not work 

properly on noncircular objects. A proposed alternative, see Khatib [lJ, 

is to use an n-ellipse: 

(x/a)2n + (y/b)2n = 1 • 

At the surface of the obstacle the potential levels should match the contour 

of the surface. This requires n ~ 00 at the surface, while away from it 

the contour must become spherical. Another potential, similar to FIAAS, is 

proposed by Kuntze-Schill [lJ: 

for r:S E: 

V(r) 

r > E: 

where E: > 0 is a small constant. 

Since the artificial repulsive potential is a function of position, 

it requires some sensing of such position. The present algorithms are 

based on two methods of obstacle surveillance: absolute by fixed sensors 
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mounted on the ceiling, see Paul [2J, or relative by sensors that are 

mobile with the machine - say the arm of a manipulator - see Bejczy [lJ, 

Calm-Phillips [lJ. Obviously the second method lends itself better 

to our purpose in that it requires a shorter sensing range and simpler 

algorithms based on direct measuring of the distance between the obstacle 

and the sensor. When position sensing is too expensive, it may be replaced 

by force sensing. 

EXAMPLE 6.2.1. Consider the linear system 

x = AX + Bu + CW (6.2.6) 

with A,B,C constant matrices of appropriate dimensions. Here the reader 

may like to recall equation (3.1.4) and the subsequent discussion. Suppose 

-A is stable, that is, with non-positive real parts of the eigenvalues. 

Let Q be a negative definite N x N matrix of the Liapunov Matrix Equation 

(3.1. 7) with solution being a positive definite symmetric matrix P. We 

- _T - A ~ {-I-T - } choose as in Section 3.1: V(x) = x Px If = x x Px ~ const , then 

(i) of Conditions 6.2.2 holds. Furthermore, if there is a matrix D such 

that C = BD, and if 

U ~ {ii II ii II < PI const > O} 

W ~ {w II wI! < P2 const > O} 

with PI ~ IIDII P2 , then (ii) of Conditions 6.2.2 is met and the avoidance 

is generated by the corresponding L-G controller, cf. (5.3.12): 

T -
B Px 

PI 
I! BTpx II 

(6.2.7) 

X- ~ {-I T - } for all i N = x B Px = 0 For x € N, u may take on any admissible 

value, possibly the saturation value or zero. The set N replaces in our 

first order system the set specified by S = const in (3.3.13), and plays 

the same role. 

The satisfaction of (i) in Conditions 6.2.2 follows at once, whereas 

that of (ii) is readily seen by calculating 

~T _ - -
2x P (Ax + Bu + Cw) 

_T T - _T - -T -
x (PA + A p) x + 2x PBu + 2x PBDw 

- xTQX + 2 (xTpBii + xTpBDW) 
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REMARK 6.2.4. Suppose -A is not stable but (-A,-B) is stabilizable, 

that is, there exist a matrix N such that (-A, -BN) is stable, then 

(6.2.7) is replaced by 
T _ 

B Px 

IIBTpxl1 
ii = Nx + (!?2. 7) , 

and for this control program to be admissible, U must be such that 

P(x) C U for all x € I:J.A • In any event P(·) must be piece-wise contin

uous. 

To illustrate the case numerically, let us assume 

A [: :] B C W {w I Iwl :5 l} . 

Since -A is not stable, but (-A, -B) is stabilizable, we determine first 

the linear part of (6.2.7)'. It is readily deduced to be Nx with for 

instance N = (-1,1). Then if Q is taken as the unit matrix, the solution 

of the Liapunov Matrix Equation (3.1.7) with A replaced by A + BN is 

P [3/2 -1/2] 

-1/2 1 

so that the nonlinear part of the control program is sgn (-txl +x 2 ). Thus 

provided A is a ball: xTpx:s; a = const > 0, the avoidance controller is 

(6.2.8) 

for all x € N. The control constraint set U depends on the choice of 

~A. For instance, we may choose 

~f:. {X I xTpx :5 a + f:., f:. > O} 

so that U must be such that 

P(x) c U , v X € f:!.A - A , o 

EXAMPLE 6.2.2. Following the case study by Bojadziev [lJ, we extend 

Example 1.1.3 to the n links physical pendulum, see Fig. 6.5, which may 

represent an open chain mechanical structure such as a robotic manipulator. 

We reduce the links to point masses 

gravity CGi , i = l, ... ,n , at the 

mi in the corresponding centers of 

distance a. from the joints O. l' 
~ ~-

while !/'i denotes the length of the link concerned and 

ponding moment of inertia. Then we abbreviate 

I. is the corres
~ 
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(6.2.10) 

and obtain the kinetic energy 

(6.2.11) 

and the potential energy 

v = g \~ 1 J. (1 - cos q. ) L~= ~ ~ 
(6.2.12) 

z 

r 

ZONE 
'~ '1.3 ~,\ . ' 

, CGn 

t+n 

WORK 

1---" 
Fig. 6.5 

This yields the Lagrange equations in the form 

(6.2.13) 

,. DO 
where I\i qi = Qi represent linear damping forces and u i is the control 

torque at each joint 0i of the manipulator. From (6.2.11), (6.2.12) we 

obtain 

} (6.2.14) 

with the power 

u q _ ~ ~2 • (6.2.15) 
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Note that (6.2.15) is the same as if (6.2.13) were inertially decoupled. 

The work region of the chain is described in the Cartesian frame Oxz by 

W : X 2 + Z2 S (In £)2 
Li=l i 

and the chain is not allowed to cross its boundary ClA of the avoidance 

set A infested by obstacles (antitargets), as marked in Fig. 6.5. A 

given shape-line of the chain is denoted Conf (q) in OXz, and the 

boundary ClA is defined by 

"A _A _A 
o : Conf(q ) U Conf(-q ) 

_A A AT A>O 1" with q = (ql' ... ,~) , qi ' l, ... ,n separating the anti tar-

gets from the work envelope in the state space corresponding to W, see 

Section 1.6. A safety zone "'A shown in Fig. 6.5 safeguards the cha~n from 

crossing ClA. It is located between the latter and Cl'" : e; 
_S _S 

Conf(q ) U Conf(-q ) 

_S S S) T 
with q (ql, ... ,qn i l, ... ,n . We may now use 

E-levels to specify A, "'e; 

with "'A: he; S E(q,q) S hA with E(q,q) given by (6.2.14). Then the 

state work envelope corresponding to W is determined as the complement 

~ - "'e;' that is, by E (q,q) S he;' within the basic energy cup. As we 

are avoiding A from below, the inequality in Corollary 6.2.1 is inverted 

and we are in search of a non-accumulative controller. By (6.2.15) we 

need 

r\q~/Iqil, Iqi l ~ Si 

1 0, I qi I < 13 i' i = 1, ... , n . 
(6.2.16) 

EXAMPLE 6.2.3. The use of relative coordinates is demonstrated on avoid-

ance of a tracking missile M which pursues the point-mass modelled craft 

C along the line-of-sight (LOS) automatic infrared guidance, see Fig. 6.6. 

":::'~ ____ L-____ REFERENCE LINE 

Fig. 6.6 
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We reduce the description of motion to kinematics. For constant pursuer 

and evader speeds VM and V respectively, the equations are 

r = V cos ¢ - VM ' 

r8 = V sin ¢ , ) (6.2.17) 

lui ~ u. Denote while the evader's normal acceleration is u 
r:, 

(VM/V) = s E (0,1) and choose xl = r x 2 ¢. Then the state equations 

are 

) (6.2.18) 

Note that the obstacle normal acceleration is a fixed constant. The objec

tive is to avoid M, that is, the anti-target is defined as 

TA = {xlxl ~ a = const > O}, in terms of the choice V(x) = Xl In choosing 

the avoidance set A ~ TA we are guided by the following considerations. 

When x = X 
1 1 max ( cos X2 = 1 ), M can be allowed to approach 

to within a minimum distance a. However, when xl Xlmin = -V -VM < 0 , 

( cos X2 = -1 ), M must be kept further away to give C sufficient time to 

evade. Thus, if r:, ~ {x I X 1 E JR +, I x 2 1 ~ 7T}, we are led to design the avoid

ance set as 

see Fig. 6.7. Using Corollary 6.2.1, we obtain 

u = - u sgnx2 • (6.2.19) 

Condition (6.2.2) is met for all x E ~A if 

v X E ~A . 

since x 2 E [-7T,7T], a conservative bound is given by 

(6.2.20) 

1T f-------~ 

a 

.A. 
-IT f-------_\. 

Fig. 6.7 
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Note that, the larger 8, the closer the missile M may approach the craft 

C when it 
1 

x . 
Iml.n 

Hence the larger the required control u. Also, as 

s increases, so does the lower bound of u. o 

In case studies it may be difficult to find a C1-test-function, see 

our comments in Section 3.4. Leitmann [5J introduces the sufficient condi

tions for avoidance with less demanding piece-wise C1-function V(·) . 

DEFINITION 6.2.1. A denumerable decomposition D of a set 
N+l 

DXlRclR 

is a denumerable collection of disjoint sets whose union is D. We write 
1:.' . 

D = {D J I j E J} where J is a denumerable index set of disjoint subsets. 

DEFINITION 6.2.2. Let D x lR be a subset of 
N+l 

lR and D a denumerable 

decomposi tion of D. A real valued continuous function V ( .) on D x lR 

is said to be of class C1 with respect to D if and only if for each 

j E J there is a pair wj , V. ( .) such thatWj is an open set containing 
J 

Dj and V.(·) : wj XlR -"lR is of class C1 such that V.(x,t) = V(x,t) , 
J J 

V X E Dj t E lR . 

The following lemma was proved by Stalford [lJ. 

LEMMA 6.2.1. Let V ( .) : D x lR -.. lR be C 1 wi th respect to decorrrposi tion 

D. Let {w j , v. (.) I j E J} be a collection of pairs associated with 
J 6 . 

V(.) > and let T. = {t E [to,t1Jlx(t) E DJ}, j E J. Suppose that for each 
J 

j E J > we have 

a.e. T .. 
J 

Then the function g (.) : [to' tl J -.. lR defined by g (t) 

absolutely continuous and monotone nondecreasing. 

V[x(t)J is 

Using the above, we have the following generalization of Conditions 

6.2.1, Leitmann [5J: 

CONDITIONS 6.2.3. The system (2.2.6) I is completely strongly controllable 

for avoidance of A if there is I:.A , P(·) on I:.A and a function 

V(·) : DA x lR -"lR, DA (open) ::> EA , which is C1 with respect to a 

denumerable decomposition DA of D, such that for all (x,t) E I:.A x lR , 

(i) V(x,t) > V(~,T), ~ E (lA, T ~ t, 
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REFERENCE 

Fig. 6.8 

(ii) for all (x,t) E Dj x R , 

aV(x,t) - T - - - -
at + V'xV(x,t) ·f(x,u,w,t) ~ 0 (6.2.21) 

for all W E W . 

The proof is analogous to that for Conditions 6.2.1 differing only in 

that Lemma 6.2.1 is used. By the same argument as before, we also have the 

following corollary, Leitmann [5J. 

COROLLARY 6.2.3. Given (x,t) E Dj x R , j E J, if there is 

(U*,w*) E U x W such that Corollary 6.2.1 holds3 then (ii) of Conditions 

6.2.3 is met with u* E P*(x,t) . 

EXAMPLE 6.2.4. We illustrate the use of Conditions 6.2.3 on the scenario 

of a pedestrian avoiding the homicidal driver on a bounded parking lot in 

the classical homicidal chauffeur game of Isaacs [lJ. It is assumed that 

the strategy of the pursuing car w is unknown to the evader except for 

its limitations w E W . With the geometry seen at Fig. 6.8, the kinematic 

equations of motion lead to the following state equations: 

v sin u + wx 2 ) (6.2.22) 
VCOSU-WX1-VC 

where V, u are the evader's constant speed and control turning angle, 

respectively, while Vc = const is the pursuing car's speed with its 

turning angle w bounded in W: I w I s w . 

The anti target is a circular disc centered at the pursuer 

TA : x~ + x~ S £2, £ = const 

We design the avoidance set seen in Fig. 6.9 as 
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Fig. 6.9 

A/:'{ (XI'X2)IX~ + 

= (x I ,x 2) IXII tan a ~ x 2 ~ -lxII cota+9.,csca 

X 2 ~ I x I I tan a , ) 
We define /:, as A but with 9., replaced by 9., + €, € 

€ 
const > 0 and let 

D = DI U D2 U D3 enclose 6A with 

DI /:, {(X I 'X 2) 19.,2 < xi+x~,,; (9.,+€)2 

D2 /:, {(X I 'X 2) IXI ,,; 0, X2 > -xl tan a 

Xl cot a + 9., csc a < X2 ~ Xl cot a + (9., + €) csc a} , 

D3 /:, {(X I 'X 2) 10 < Xl'X 2 > Xl tan a , 

- Xl cot a + JI., csc ex < X2 ,,; -Xl cot a + (9., + €) csc a} . 

To apply Conditions 6.2.3, assume 

VI (x,t) 
/:, 

X~ + x~ , for X E DI t EJR 

V2 (x,t) 
/:, 

(x 2 - xl cot a) 9., sin a , for X E D2 t EJR 

V3 (x,t) 
/:, 

(x 2 + xl cot a) 9., sin a , for X E D3 t EJR 

With this specification, the function V(·) is continuous and satisfies 

(i) of Conditions 6.2.3. On the use of Corollary 6.2.3, it is readily seen 

that (ii) of these conditions is met with the control condition 

sin ex ~ v/vc (6.2.23) 

G ~ (v - v c sin a) / (9., + €) cot a (6.2.24) 

and the controller is defined by, 

sin u X /lx2+x2 
I I 2 : ) (6.2.25) 

cos u X /IX2 +X2 
2 I 2 
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sin u - cos a } X E D2 

cos u sin a 
(6.2.26) 

sin u cos a 

} X E D3 

cos u sin a 
(6.2.27) 

Note that (6.2.23) can be met also if V < V c ' that is, the evader is 

slower than the car. Moreover, if V < V then there is no Cl-function 
c 

V(·) for which Conditions 6.2.1 apply (T.L. Vincent, private communica-

tion) and we are forced to use Conditions 6.2.3. The control function is 

single valued at int Dj, for all j, but the program P (.) must be set 

valued for the intersections ii n oj, i tc j . The latter is the common 

case when several test functions are in use, thus presenting another reason 

why we operate with set valued P(·) 's. o 

As mentioned, it is sometimes inconvenient to design the safety zone 

tJ.A outside A, we may then settle for repelling instead of avoidance, see 

Definition 6.1.2. The corresponding sufficient conditions follow. 

CONDITIONS 6.2.4. The system (2.2.6)' is completely strongly controllable 

for repelling from A, if there is P (.) defined on A and a Cl-function 

V ( .) : A + JR such that for all x E A , 

(i) V(x) < V(~) , ~ E aA 

(ii) for each U E P(x) , 

VV(x)Tf(x,u,w,t) ~ 0 (6.2.28) 

The Conditions are implied by the following simple observation. Motions 

tJ. - ° + enter A only through a'A aA n tJ., thus consider ¢(x ,to,JR) from 

xO E a'A. Suppose there is tl > to such that ~(xO,tO,tl) = xl E intA. 

Then by (i), V(x l ) < V(xo) , contradicting (ii). 

Note that here we may again invert both inequalities in (i) and (ii) 

simultaneously, without changing the proving argument thus the adjustment 

between the dissipative and accumulative controllers applies in the same 

way as before. We obviously may use Corollary 6.2.1 for repelling of the 

above, as much as we used it for implementing Conditions 6.2.2. 

Recall now the repelling archipelago of Section 6.1 with the sequence 

A, which is in fact a denumerable decomposition of A, and the mesh B. 

Following Conditions 6.2.4 and using Corollary 6.2.1, if we may find 
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the sequence of C1-functions Va (·) Aa +~ such that 

Aa {- A I - a} = XE IVa(x):,>vA , a = I, ... ,!/. , 

and satisfying (6.2.20), then B becomes the repelling mesh of Section 6.1. 

Obviously, since B encloses A = u ~ a, then A is repelling as well. 

Then the controllers used for repelling from each Aa serve two objectives: 

(1 0 ) keep the motions starting at A in B, (2 0 ) repel from A all motions 

starting outside this set. 

EXAMPLE 6.2.5. We illustrate the repelling on the frequently used case of 

oscillator (1.1.6) followed in Examples 1.1.1, 3.2.1, 3.3.1 and 5.3.3. 

Let the system be described by (5.3.11), with the conservative separatrix 

(3.3.18) : 

(6.2.29) 

the anti targets inside the basic energy cup ZE which thus asks for 

A ~ llE E(x):,> hCE ' with aA defined by (6.2.29) restricted to the cup, 

that is, constrained by condition (2.3.19) 

which makes aA defined by (6.2.29) and 

(6.2.30) 

It is obvious that no matter what the behavior of the motions outside A, 
upon collision with aA if at all, we must switch the controller to the 

conservative (5.3.17) which makes the motion follow (6.2.29), preventing 

its entry to int A, which is our objective. 

Observe also that if such a controller is implemented before collision 

with aA, we obtain avoidance, as the motion follows a conservative path 

about all equilibria across damped separatrices, see Fig. 5.12. D 

EXERCISES 6.2 

6.2.1 Design controllerf,l generating avoidance of the set A by trajectories 

of the following systems: 

€ > 0 small constant. 
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A 2 2 < 6 : xl + X 2 • 

(iii) xl Xl + X2 ' 

X2 X2 + U 

X3 - X3 + x 2 

A : x~ + 
2 x 2 

2 
+ x3 :<; (3.6) 2 • 

(iv) Xl 3x l - XIX~ + U l 

X2 
3 

X2 + Xl + u 2 

A 2 2 < 1 : xl + x 2 - • 

(V) 

[:: 1 [: -: ][:J [:: 1 
fj. A = {(O,O)} . 

6.2.2 Find the controller securing complete controllability for avoidance 

A 2 2 2 2 of the set : xl + x 2 + x3 :<; a by trajectories of the system 

Estimate a, for given u. 

6.2.3 What is the difference, if any, between the avoidance of Definition 

6.1.1 and collision with stipulated TC ~ 00 ? 

6.2.4 Give an example of a manipulator arm travelling along a repelling 

mesh B placed somewhere in H. Find the controller. 
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6.3 REAL TIME AVOIDANCE 

Real time and ultimate avoidance are weaker objectives and thus may 

be implied by less demanding conditions. The reader may like to recall 

Definitions 6.1.3 and 6.1.4, and consider the Cl-function V(·) : 

DA XR+lR, DA(Open) :::> cA, with 

+ I::,. 
sup V(x,t) I (x,t) € aA } vA x lR 

I::,. 
(6.3.1) 

v - inf V(x,t) I (x,t) € al::,.E x lR • 
E 

The following conditions are adopted from Leitmann-Skowronski [2J. 

CONDITIONS 6.3.1. The system (2.2.6)' is strongly controllable on some 

1::,.0 c I::,. for real time avoidance of A , if there ar~ functions P(·) ,V(·) 

defined on 

(i) 

(ii) 

DA x lR such that 

o < vA+ < v- < 00 • 

E ' 

for all u € P(x,t) , there is TA < 00 such that 

aV(x,t) T-
at + IlxF(x,t) f(x,u,w,t) 

- + v -v 
E A 

TA 
(6.3.2) 

for all iii € W. The conditions remain the same for stipulated 

for all xO i A , If such a motion does not cross 

aA then it avoids A for inde fini te time. Thus suppose ~ ( . ) in tersects 

aA. Let tl ~ to be the time of the first intersection: ~(xO,tO,tl) 

= xl € aA. Integrating (6.3.2) along the motion we obtain 

V(x o ,to) - V(x l ,tl) 
~ 

but in view of (i), 

-0 -1 
V(X ,to) - V(X ,tl) 

- + v - v 
E A 

~ 1 , 

(6.3.3) 

thus yielding tl - to ~ TA which closes the proof. The proving argument 
+ 

remains the same for stipulated TA = TA 

Observe that in view of Definition 6.1.3 and (6.3.2) the avoidance in 

indefinite time of Section 6.2 is recovered for Now let 
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tJ. 
inf V(x,t) I (x,t) E aA x JR. 

) vA 

tJ. 
(6.3.4) 

v+ 
E sup V(x,t) I (x,t) E allE (x o) x JR.. 

Then 

V(xl,t l ) -0 + ~ + 
- V(x ,to) ~ vA - v -cATA E 

so that -cA ~ 0 is a lower bound for the time derivative of V(x,t) 

along a motion from x o E allE intersecting aA at xl - 0 <P(x ,to,t l ) 

Thus it is a safe rate of decrease of p(x o ,A) measured in terms of V(·) 

Conversely, as mentioned in Section 6.1, given cA and TA we can estimate 

lIA(TA) Moreover, given cA and one may obtain T = (v+ -v-)/c . 
A A A 

-0 x ,to 

Finally, utilizing 

+ - - + (vE - vA) 
~ 

(vE -vA) 
0 c = ~ 

A + + 
(6.3.5) 

TA TA 

(6.3.2), we see that o implies indefinite time avoidance, that is, 

Obviously when allE(x o) 

v v+ = v 
E E E ' 

+ 
vA = vA = vA . 

V(x,t) = const 

and aA are defined by V-levels, then 

Often V ( . ) is selected from aA: 

COROLLARY 6.3.1. Given x o E A, to E JR., if there is a pair (u*,w*) 

E U x W such that 

L(x,ii*,w*,t) max min L(x,u,w,t) ~ 

ii w 

- + v -v 
E A 

TA 
(6.3.6) 

then (ii) of Conditions 6.3.2 are met with ii*E P*(x,t) 

The proving argument here is the same as for Corollary 6.2.1. We 

illustrate the use of the corollary in the following example. 

EXAMPLE 6.3.1. A point-mass modelled craft C moving on a plane with a 

speed V = const and with some controlled directional azimuth u tries to 

avoid during TA a point-mass modelled body B moving with a greater speed 

VB > V in an unpredictable direction under azimuth w. The size of the 

body is such that its diameter forms a circular zone of radius r B abo~t 

its center. The geometry of the scenario is seen in Fig. 6.10 and the 

kinematic equations are 

309 



www.manaraa.com

REFERENCE 

Fig. 6.10 

R vcos(8+u) 

ReC = V sin (8 + u) 

r = VB cos w - V cos u 

reB = VB sin w - V sinu 

with the anti target 

We let the avoidance set be A: r ~ r B and take V(R,Oc,r,8B) 

in view of Corollary 6.3.1, 

TA 

(6.3.7) 

r. Then 

(6.3.8) 

where r O r(t o) at the beginning of TA • The control program P(.) 

obtained from (6.3.8) is such that u = u* = -1T for all tE[to,to+TAJ, 

assuming the avoidance of T A during 

_ r O r B 
(6.3.9) 

Conversely, of course, given TA the evading craft can assure avoidance of 

TA during TA if 

(6.3.10) 

Rather a different result is obtained when TA is not specified a-priori, 

but depends on an objective of the evading craft and hence on the controller. 

Suppose that, starting at RO = R(t o) the craft wishes to reach 

R = RC < RO as rapidly as possible while assuring avoidance during this 

interval, that is, he wishes to attain R = RC before r = r B . In this 
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event one may consider V ~ VB as much as V $ VB 

(6.3.2) requires u to be chosen such that 

° r -r 
cos u $ 

B 

Now, condition 

(6.3.11) 

However, since C desires to reach R = RC as rapidly as possible, it 

follows from the first equation of (6.3.7) that u must satisfy 

cos (8 +u) = -1 (6.3.12) 

or 

u = 1T - 8 . (6.3.13) 

Substitution of (6.3.13) into (6.3.11) gives 

° r -r 
B (6.3.14) 

The interval T is obtained from the integration of the first equation of 
A 

(6.3.7) with (6.3.12), that is, 

T = 
A 

RO - R 

V 

C 

whence (6.3.14) becomes 

cos 8 
V 

(6.3.15) 

This condition, which guarantees the satisfaction of (6.3.2), is assured 

if 

(6.3.16) 

Thus, provided the initial values rO,Ro satisfy the above, the craft 

attains RC before collision: r = VB • D 

We turn now to ultimate avoidance and introduce conditions adapted 

from Leitmann-Skowronski [2J. 

CONDITIONS 6.3.2. The system (2.2.6)' is completely stpongly contpollable 

fop ultimate avoidance if there is a function P(·) , a C1-function V(·) , 

both defined on /':, x lR, and two constants, vA > 0 and cA > 0, such 

that 

(i) 0 $ V(x,t) $ vA' V(x,t) E A x lR; 

(ii) for all (x,t) E I:::. x lR and all ii E P(x,t) , 
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(6.3.17) 

for all W E W. 

In order to verify the conditions, we first consider the case of 

;p(.) E K(xO,t o) where V(xO,t o) ~ vA. By (ii), V(·) increases along 

¢(.) Thus by (i), there is no tj > to such that ¢(xO,tO,t l ) E A 
Next we consider (xO,t o) such that V(xO,t o) < vA so that for some 

t> to it is possible that ¢(XO,to,t) E A, in view of (i). Again, by 

(ii), V(·) 

a t A > to 
- -0 
¢(x ,to'·) 

increases along the corresponding trajectory so that there is ~ 

-A ;:r -0) ( -A ) . d h and x = ~(x ,to,tA such that V x ,tA = vA provlde t at 

Then, upon integrating (ii) 

along the trajectory and taking note of (i), we obtain 

(6.3.18) 

The proviso concerning [to,t j ] ~ ~to,tA] can always be met by adjusting 

the constant Of course, as in the first case, now there also is no 

for which Finally, by (6.3.18), 

(6.3.19) 

The discussion of (6.3.19) is similar to that of (6.3.5) and is left to the 

reader. 

Let us now briefly consider the case of ultimate avoidance with stip

ulated TA < 00 • 

CONDITIONS 6.3.3. The system (2.2.6) I is completely strongly controllable 

for ultimate avoidance after T ~, if there is a function P ( . ) and a C 1_ 

function V ( .) , both defined on 11 x lR, and a constant vA' such that 

(i) 0 S V(x,t) S vA' V(x,t) E A x lR; 

(ii) for all (x,t) E 11 x lR and u E P(x,t) , 

av(x,t) - T- - __ 
at + I7xV(x,t) f(x,u,w,t) (6.3.20) 

for all w E W ; 

(iii) 
- -0 -0 
¢(x ,to'·) E K(x ,to) is defined on 

[to' t j ] ~ [to' to + T A] , V (xo , to) E { (x, t) E 11 x lR los V (x, t) < vA} 

The proof is analogous to that of Conditions 6.3.2 with cA replaced 

by (VA/TA ). 
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COROLLARY 6.3.2. Given x,t E 6 x 1R, if there is a pair (u*,w*) E U x W 

such that 

L(x,u*,W*,t) = max min L(x,u,w,t) 
u W 

then (iii) of Conditions 6.3.3 is met with u* E P*(x,t) 

stipulated cA is replaced by vAITA 

(6.3.21) 

When TA is 

EXAMPLE 6.3.2. Consider the same motion equations as in Example 6.3.1, and 

let the evading craft C have the same objective of reaching R = RC but 

this time having escaped from A : r :0; r A , see Fig. 6.11, which is speci

fied as a turbulence area B on route of C 

Fig. 6.11 

There is no need for a safety zone and the time is 

We choose again V r , 

v cos w - V cos u ::> 
B 

r A , with (6.3.20): 

\I w E W . 

Since Icos wi < 1 the above holds if 

- vB - V cos u ::> 

or 

cos (u + TI) 
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This condition allows us to choose a feasible controller provided 

:s; 1 , 

which means r < R - RO 
A C VB < V, that is, the craft has to be faster 

than the turbulence. D 

The reader may also recall here the escape from atmosphere in Section 

5.9. 

Closing the section, let us observe that the proving argument for the 

conditions does not change when stationary Vex) is introduced, as shown 

in the examples. 

EXERCISES 6.3 

6.3.1 Consider the system 

and design a control program for ultimate avoidance after TA = 10 sec 

of the set A located about (0,0) and bounded by the separatrices. 

6.3.2 Form sufficient conditions for the real time avoidance of A during 

T: and specify means of obtaining a corresponding control program. 

6.3.3 Recall what was said that it happens to Definition 6.1.3 when 

T .... 
A 

Discuss the alternative extreme case of TA "" 0 • 

does it refer to collision? 

6.3.4 Using necessary and sufficient conditions, show that ultimate 

avoidance after a stipulated time of the exterior set outside 

How 

separatrices of the system q + dq + aq - bq3 = U , a,b,d > 0 

is equivalent to finite time capture in the interior (inside 

separatrices) set surrounding (0,0). Find the control program for 

both cases. 

6.4 COLLISION OR CAPTURE FIRST 

Let us now show how to combine two modular objectives in the relatively 

simple case of avoiding some anti target (one or more) before colliding with 

another. Such a combination is obviously basic for many practical scenarios. 

In passing, it has been suggested already in Examples 6.3.1, 6.3.2. It 
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means that, given a collection of bodies, we want to collide with a specific 

body before allowing collision with any other. Suggestion of the problem 

and sufficient conditions (for capture rather than collision) belongs to 

Getz-Leitmann flJ, modified later by stonier [2J. It had been used exten

sively for the game applications, see .our references in Chapter 8, and for 

coordination control of robotic systems, see Skowronski 144J. 

DEFINITION 6.4.1. Given a target T and a set of antitargets enclosed in 

A in 1':" a motion of (2.2.6) I from xo i A I to E IR, collides with T 

first, avoiding A before collision, if and only if there is 

that 

¢(xo ,to,[to,to+ TFJ) n A 

¢(xO,to,to+TF) ET 

When TF is stipulated, we have collision first during TF • 

< 00 such 

(6.4.1) 

(6.4.2) 

The above definition combines real time avoidance with real time 

collision but the emphasis is on the latter. It means that TF is condi

tioned by collision during TF with A subtracted: L'lF C L'lc - A I and the 

avoidance time adjusted. Here I':, denotes the region of strong controlla· 
F 

bility for collision first. The above means that for the avoidance part 

we should consider Definition 6.1. 3, replacing TA by TF . Observe that 

there is no need to introduce the symmetric concept with emphasis on 

avoidance, say avoidance first, as the real time avoidance of Section 6.3 

takes care of the case. 

The fact that the avoidance time-interval must match (be equal or 

larger than) the interval before collision gives an additional condition 

from which the region of strong controllability I':,F may be determined. It 

will be seen below following the calculation of these intervals. 

The sufficient conditions for strong controllability for collision 

first are designed by combining the conditions for the particular sub

objectives: collision and real time avoidance. 

Given the sets T,A, T n A = <p, and 1':,0 enclosed in /';C - A, as 

well as I':,s (xo) ::> A with ClA n ,ME = <P, we adjust the complements: 

CFT ~ L'lF - T, cA ~ L'lF and introduce open sets DF ::> CF DA ::> L'lF 

Moreover we introduce two C1-test functions VF (·) DF ->- IR, with v;,vFT 
- + defined by (5.3.1) and VA(·) : DA ->- IR, with vE,vA defined by (6.3.1). 
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CONDITIONS 6.4.1. The system (2.2.6)' is strongly controllable on ~Q 

for collision - first with T avoiding A, if there is a program P(·) 

defined on 

(i) 

(ii) 

(iii) 

(iv) 

and two C1-functions 

VF(x) > vFT ' for x i T ; 

VF(x) s v+ , for x E CFT 

o < + < v < 00 vA E 

for all x E OF , U E p(x)IDF there is TF 

I t + T - T- - + 
o F 'l/VF(x) f(x,u,w,t)dt s -(v -v ) o· FT 

to 

for all w E W ; and 

(v) for all x E DA , u E P(x) IDA' 

- T- - - -'l/VA(x) f(x,u,w,t) ~ -

for all w E W . 

such that 

< 00 such that 

(6.4.3) 

(6.4.4) 

The verification of the above follows immediately from Conditions 

5.3.2 and 6.3.1 with 

Obviously it may be possible to combine VF(·),VA(·) into a single 

function, very much along the lines that Stonier [2J did for the Getz

Leitmann's combined objective, but for reasons explained in Section 3.4, 

it is riot necessarily convenient. 

The corresponding corollary which allows us to determine P(·) can be 

written immediately the same way as for Conditions 5.3.2, 6.3.1. From 

(6.4.3) we may obtain 

Fig. 6.12 
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+ V o - VFT 

V;-VF(XO) 

while (6.4.4) yields 

T ;:" 
F 

+ v - V 
E A 

c A 

where is the safe rate of decrease of 

see Section 6.3. From (6.4.5) and (6.4.6) we obtain 

+ v -v ° FT 

- + v -v 
E A 

CA 

which defines /':,F relative to c 
A 

(6.4.5) 

(6.4.6) 

measured in 

(6.4.7) 

Since collision is the leading property, we may also have the objective 

of collision first in stipulated time TF , definitions, conditions and 

corresponding controller yielding corollary are obtainable immediately from 

the above and left to the reader. 

The mentioned alternative combination of capture in some target T 

after a time interval TF during which we have avoided A, is a more demand

ing objective and needs stronger conditions. 

DEFINITION 6.4.2. A motion of (2.2.6) I from xO 1 A, to E: 1R is captured 

in T first, avoiding A before such capture, if and only if there is 

< 00 such that 

- ° A cjJ(x ,to,[to,to+ TFJ) n = cjJ , (6.4.5) 

Cji(xO,to,t)E:T, vt;:"to+TF (6.4.6) 

For illustration, see trajectories enclosed in the positively invariant TC 

in Fig. 6.12. 

Sufficient conditions for the above objective have been introduced by 

Getz-Leitmann 11J and we quote them below adjusting the notation. 

Given a candidate capturing subtarget TC and the avoidance set A, 

we introduce a set /':,0' enveloping but not equal to TC u A, and two C 1_ 

functions Vf(·),VA (·) defined on /':,0 and such that 

TC :J /':,1 ~ {x E: /':,0 IVf(x) <; vf } 

A c /':,2 ~ {x E: /':,0 IVA (x) <; VA} 

where vf,vA > 0 are suitable constants. 

(6.4.6) 

(6.4.7) 
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CONDITIONS 6.4.2. The system (2.2.6) I is strongly controllable on ~o for 

capture first in TC avoiding A, if there is a program P(·) defined on 

~o and two C1-functions Vf (·) ,VA (.) as defined above such that 

(i) Vf (·) is radially unbounded: Vf(x) -+ 00 , 

(ii) ~o is strongly positively invariant; 

(iii) for all x E ~o' U E P(x) there are constants cf > 0 , 

and cA such that 

sup VVf(X)Tf(x,U,w,t) $ -cf , 
w 

(6.4.8) 

inf VVA(X)Tf(X,U,w,t) ~ -cA . 
w 

(6.4.9) 

The proof of the above conditions is given in Getz-Leitmann [lJ, or 
+ may be derived by combining Conditions 5.5.1 and 6.3.1 with TA = TF 

The reader might have observed already that the controller-implementing 

corollary is already included in the item (iii) of the conditions, by taking 

the inequalities with supremum and infimum, successively. While an assumed 

candidate ~o may be confirmed by the conditions as a strongly controllable 

set, it is not yet the region of such controllability, that is, the largest 

strongly controllable set. To obtain the latter, we estimate TF from 

both inequalities in (iii) and compare the results, similarly as for (6.4.7). 

This verifies the region of strong controllability for capture-first deter

mined as the maximal 

~o = {x (6.4.10) 

generated by a suitable maximizing choice of the constants c F > 0 , c A ' 

see Getz-Leitmann [IJ. 

Following the latter work, we may now combine Example 6.3.1 with 6.3.2 

to obtain an illustration of our present conditions. 

EXAMPLE 6.4.1. The craft C of Example 6.3.1 attempts capture first: 

attain a shelter target T before being intercepted by a turbulence B 

moving faster VB > V and in uncertain direction given by w E W. The 

geometry of the scenario is shown in Fig. 6.10, the motion equations are 

given by (6.3.7), with the target 
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see Example 6.3.2, and avoidance set A 
Fig. 6.11. We select the functions 

r ~ r B see Example 6.3.1, and 

R, VA = r so that the sets 

/::"1 '/::"2 are specified by V-levels: v'f = RC ' vA = r B , that is, 

TC = /::"1 : R < RC 

A = /::"2 : r ~ r B 

(6.4.11) 

(6.4.12) 

and 'ilV'f = (1,0,0,0) , \IVA = (0,0,1,0). Then (iii) of Conditions 6.4.2 

give the control conditions 

v cos (8 + u) ~ -c'f < ° (6.4.13) 

(6.4.14) 

and /::"0 is defined by 

c A 
> - (R -R ) 

c'f C 
(6.4.15) 

The control condition (6.4.13) implies 

-1 ~ cos (8 + u) 

so that 

for 0 E [0,00) • 

Given c'f'/::"o is the largest when choosing the smallest cA such that 

(6.4.14) is met for all possible 8. This results in 

whence 

cA 
1 + (1 + 0) 

VB 

c'f V 

Thus /::"'f is obtained when 0 ° , yielding 

/::"'f > 
V +VB 

(R -RC) 0 r-r 
B V 

EXAMPLE 6.4.2. As another example, let us investigate the "soft landing" 

problem of a craft which aims at avoiding the ground of a planet by sus

pending itself in a safe position at some distance h above such planet. 

Ignoring less influential forces, that is, all except gravity g of the 

planet and uncertain thrust uw, we obtain the motion equation q = uw - g 

with the state equations 
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X 
I ) (6.4.16) 

uw -g 

A • 6. {} A 6. { • I .-:-} We assume '-": q ~ 0·, q E:rn., T = h,O , and = (q,q) q=O, q>q 
~ 

with q a safe value of velocity, see Fig. 6.13. The action of the thrust 

uw = const balances the planet gravitation. The pilot of the craft may 

use u E [a I' a 2 ] , 

b 2 > b l > g > 0 . 

a 2 > a l > 0 subject to the uncertainty w E [b l ,b 2 ] , 

The equation (6.4.16) is integrable: 

2 (uw - g) xI const (6.4.17) 

which would give the test function V if needed, but since we have trajec

tories in closed form, direct analysis applies. The pilot's best is to 

maximize the thrust: u(t) = a 2 against all w, that is, against 

wIt) = b l which generates the family of trajectories 

(6.4.18) 

seen in Fig. 6.13. The trajectory that collides with the target T without 

switching the control u = a 2 is thus given by 

2 x 2 
2 ( + h • a 2b l - g) 

(6.4.19) 

Motions on all other paths must switch control as shown in Fig. 6.13. 

On the other hand, crash-landing in spite of u = a 2 occurs at (0,0) 

along (6.4.19) with h = 0 substituted, which means that the strongly 

winning control of u = a 2 ends before the line 
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which determines the boundary ClllF , making the region lIF a well determined 

open set. Note that so defined ClllF is weakly P (.) -nonpermeable, so that 

it also is a semi-barrier. Consequently II - lIF is filled up with paths 

crashing into the ground A. 

The scenario is slightly different if we allow for the effect of 

atmosphere which produces drag. Then the motion equations lead to 

with d > 0 being some damping coefficient; possibly a function of 

XI ,x2 The state equations are no longer integrable but we may use 

(6.4.18) to generate the test function 

V 
2 X2 - 2(a2 b l -g)X I 

Indeed, introducing the extremizing U,w, 

generates our objective and confirms the same controls. o 

EXERCISES 6.4 

6.4.1 For the system 

and avoidance set A : x~ + x; ;:; l, find the control program which 

secures controllability for "capture first" about the equilibrium 

x~ = 1.17, x~ = 0, when starting from x~ = 1, x~ > 1 . 

J ~ I 
CONVEYOR 

Fig. 6.14 
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6.4.2 pick-and-place two-arm robot is shown in the figure below. Each 

arm is of the RP-type (rotary-prismatic). We consider the scenario 

from the viewpoint of arm A which aims at picking up an object 

from the conveyor and depositing it at the snot C on a workbench 

while avoiding collision with the arm B. The latter is considered 

a moving obstacle in its attempt to pick up an object from C and 

deposit it back on the conveyor. The conveyor moves with constant 

speed. The system has 5 DOF indicated by arrows. Specify the 

target and avoidance set and write the motion and state equation. 

Find the feedback control program for arm A securing strong con

trollability for the pick and place objective described, robust 

to the motion of arm B. 
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Chapter 7 
ADAPTIVE TRACKING CONTROL 

7.1 PATH AND MODEL FOLLOWING 

The range of applications of path-tracking control is enormous for 

any type of machines or, more generally, mechanical structures. It begins 

from point-mass modelled craft dynamics in space, air, sea and on ground, 

when controlling travel, pointing, station and formation keeping, or 

generally traffic, etc., through multi body models of manufacturing 

machinery, in particular robotic manipulators, to large flexible structures. 

Consequently, the literature dealing with such applications is too vast to 

be quoted here. For the same reason there is a large variety of methods 

attacking the problem of such tracking, also with a broad literature. The 

interested reader may look for a review in Luh [lJ,r2J, Luh-Lin [lJ and 

Skowronski [38J. 

For the general nonlinear case of mechanical systems, it is usually 

possible to attain the path-tracking objective by the methods discussed in 

Chapter 5, as already indicated in a number of examples. We may proceed 

in two different ways: either directly, taking the desired path as a 

corresponding target, possibly moving, or in relative coordinates, 

choosing the state variables to be the distance ~roM the path in Cartesian 

or Configuration spaces. 

In most practical cases, the desired Cartesian path is pre-planned 

and specified in terms of a small number of base positions and orientations 

of the bodies concerned, chosen so that they allow a precise realization 

of the desired path by interpolation. Then the path must be expressed in 

closed (analytic) format. Usually such a path consists of straight lines 
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and curves of second or third degree which are easily identified after 

having stored a small number of base points in the controlling computer. 

For instance, for the welding robot, it is common to make the desired path 

of the gripper as an intersection of two planes combined with another 

intersection of a plane and a surface of second degree (cylindrical), see 

Markov-Zemanov-Nenchev [lJ. Usually the base points are selected at 

corners of the path, and marked places where the controller may change its 

action: change of velocity, direction, pause, etc. What we have described 

seems like an alternative point-to-point sequential control. However, the 

difference is substantial and lies in a non-stopping motion at the base 

points. To achieve it, the whole path must be considered as a single 

target. The base points give the desired position and orientation of the 

structure at the desired time. For a full path planning, see Luh-Lin [lJ, 

we need also the desired corresponding velocities. Then, by inverse 

kinematics, see Section 1.6, the Configuration Space and lagrangian 

velocities space path can be designed: ~(t), ~(t) , V t ~ to. Now, 

the direct choice of state variables requires the vector 

x(t) 
. T 

(q(t),q(t)) to be controlled to the target 

T : (~(t),~(t))T = xm(t) = y(t) , (7.1.1) 

while the choice of relative state coordinates: 

requires x(t) to be controlled to a target surrounding the origin of the 

corresponding state space. In either of these two cases, capture or at 

least a suitably prolonged rendezvous, rather than collision, is sought. 

It is worth noting that the target-path in the first case, and the target 

about the zero-deviation from such a path, that is, the origin in the second 

case are geometric constructions, in particular y(t) is an arbitrarily 

designed curve. They have nothing to do with motions of the controlled 

system, or any other dynamical system for that matter. Allowing such 

independence is the advantage of using the methods discussed in Chapter 5. 

Past results in this direction on robust path tracking are quite limited. 

More commonly y(t) is considered some reference signal in terms of 

a motion or trajectory of the system concerned. We then pre-filter it 

through a suitable feed forward mechanism, perhaps adding an error compen

sating feedback terms, for design of the tracking controller. Such a 

motion or trajectory is then called nominal. Obviously the demand that 

y(t) is a motion imposes extra constraints on both y(t) and the system, 

narrowing the application of the study. However, for instance for the 
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relative coordinates representation, the controller may act as a regulator 

to the nominal motion and when the initial xO is not large (which 

commonly occurs) the system may be meaningfully linearized, see Paul [lJ, 

Bejczy [lJ, Raibert-Horn [lJ, Lee-Chung [lJ. For large perturbations such 

an assumption may not be used and there are currently various techniques 

proposed. To quote a few based on the Liapunov method, we may quote 

Koditschek [lJ, Ha-Gilbert [lJ, the latter covering also the case of 

tracking an output signal instead of state, and Ryan-Leitmann-Corless [lJ 

covering systems with uncertainty. In order to illustrate this avenue of 

study, we give below a brief outline of a technique presented in Skowronski 

[38J which seems to be the least restrictive in assumptions, but refers to 

systems without uncertainty, that is, (2.1.15) with (2.1.13). 

Substituting xm = y(t) into (2.1.15) we may evaluate the control 

U urn In terms of the mechanical system (2.1.13), with F(·) linear 

in u: F. (q,q,u,w) ~ B. (q,q,w)u. , B. cf 0, we obtain 
l l l l 

u . 
ml Bi (~,~) ['\ni + r i (~,<\n) + Di (~,~) + ITi (~) ) 

(7.1.2) 

- Ri (~,~,t)J i l, ... ,n 

the open loop, feedforward only, controller. The obvious setback of such a 

controller is the on-line differentiation producing noise, in particular 

qmi There are various methods proposed for reducing this disadvantage, 

cf. Voroneckaya-Fomin [lJ, Gusev-Yakubovich [lJ, Gusev-Timofeev-Yakubovich 

[lJ, Aksenov-Fomin [lJ. We leave this problem open as the case is well 

covered by our next discussion on the model following. Substituting the 

obtained U (t) into (2.1.15) we can expect to obtain the motions 
m 

~m(XO,to,R) which, provided the initial conditions are the same: 

xO = y (to)' should be very close to the planned curve y (t), t E R . 

It is then feasible to take ~ (.) as the nominal motion. Note that 
m 

~ (t) is a given, well defined function of time and it does not depend 
m 

upon any other solutions of (2.1.15). We now introduce the deviation from 

- f':.. - :h the nominal motion, e(t) = x(t) - ~m(t) , t 2 to' which transforms 

(2.1.15) into the relative state equation of the (2.1.6) type 

e = f(e+¢ (t),u,t) - f(¢ (t),u ,t) (7.1.3) 
m m m 

with perturbation f(¢ (t) ,u ,t) 
m m 

which is a given function of time and 

with the right hand side vanishing identically at e = 0, see Section 2.1. 

Denote fm(t) ~ f(¢m(t),Um,t). By definition f m (·) is bounded the 

same way as f(·) was. Obviously now the trivial solution e(t) - 0 

represents the nominal motion and we use the controllers of Section 3.3 to 
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produce its asymptotic stability which in turn generates the desired 

tracking objective. Alternatively we may use the controllers of Chapter 

5 to produce capture or rendezvous in a desired target about e(t) ~ 0 . 

EXAMPLE 7.1.1. Consider the system 

Xl x 2 ) 
*2 

3 - ax l + bX l - u 
(7.1.4) 

with y(t) to be followed defined by 

2 + ax 2 2hc x , m2 ml 
(7.1.5) 

where hC ~ a 2/2b is the value marking an E-level of (7.1.4) within the 

basic cup, but (7.1.5) is not such a level. Substituting (7.1.5) into 

(7.1.4) we obtain 

u 
m 

x 
ml 

X 
m2 

-ax 
ml 

provided 

(7.1.6) 

which substituted to (7.1.4) generates the nominal trajectory coinciding 

with the curve (7.1.5). Defining now 

obtain 

e. 
1 

/'., 

-ae l + be 3
1 + 3be l x (x +e l ) + bx 3 - u 

ml ml ml 

i = 1,2 , we 

) (7.1. 7) 

Letting V(e) = (1/2)e; + (a/2)e~ (b/4)e~, which is the obvious choice 

via the first integral method, we obtain 

v = 3be l x (x +e l )e 2 - ax e 2 + bx 3 e - ue 
ml ml ml ml 2 2 

or substituting the parametric representation of 

x = hhc sin t , 

y(t) : X = 12hc/a cos t , 
ml 

m2 

v = 3be l e 2 (2ahC cos 2 t + e l 12hc/a cos t) - ae2/2hc/a cos t 

+ be 2/(2hc /a) 3 cos 3 t - ue 2 . 

Then let ~ > 0 be the required tracking estimate. We want to capture 

e(t) in the subtarget TC e~ + ae~ - (b/2)e~ < 2~ which by Conditions 

5.5.1 is attained if V(e) ~ -c This is implemented by the control 

condition 

ue 2 ;:0, c-3bele2(2ahccos2t+el/2hc/acost) 

- ae 2 12hc/a cos t + be 2 (2hC/a) 3/2 cos 3 t (7.1.8) 

or using the minimizing equality, by 
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u 
{ 

(c/e2) - 3be 1 (2ahc cos 2 t + e 1 12hc/a cos t) 

- a12hc/a cos t +b(2hc /a) 3/2 cos 3 t le 2 1 2 S 

o I e21 < S , (7.1.9) 

with S,c selected as always before. o 

the above technique. First, calculating urn from y (t) 

(2.2.5)', one obtains a function of time, but also of w u (t) E P (t,w) 
m m 

with p (.) 
m 

set valued. In particular (7.1.2) will now become 

(7.1.2) • 

Substituting it back to (2.2.6)' one would not get a unique nominal trajec-

tory (ji (.) , but a whole class K (i o ,to) of them. Subtracting them from 
m 

6. - ~ 
m m 

itt) to form e(t) = x(t) - (t) yields a w-family of e(t) and (7.1.3) 
m 

that becomes a selector in a contingent equation. We have 

e E {fee + (ji (t) ,u,w,t) - i(4i (t),u ,w,t) Iii E P(i,t) 
m m m 

4i (.) EK (xO,t o) ,WEW} 
m m m 

) (7.1.10) 

- -0 
with a w-family of solutions ¢e(e ,to") , which is to be either asymptot-

ically stabilized about e (t) :: 0 or captured in some T ( about this 

trivial solution. The method again does not differ from those discussed 

and illustrated in Chapter 5, so we do not elaborate on it any further. 

In all our control problems so far, the control variables u(t) did 

change along the motion according to feedback programs, but the programs 

themselves have been designed and established off-line, even before the 

controlling process had begun. Such programs are sometimes called 

memoryless programs, see Corless-Leitmann [lJ,[2J,[3J. They are less 

efficient and more costly in robustness against uncertainty. The effective

ness of control is certainly increased if we can adjust the program on-line, 

realizing the so called signal adaptive control usually in relation to 

changing parameters of the system, the latter possibly adjusted as well. 

The change is made according to a designed adaptation law which specifies 

some dynamics over the set of variable parameters. In general terms, 

(2.2.6)' is replaced by 

(7.1.11) 

with the vector of adjustable parameters 
6. T l 

\(t) C\l(t), ..• ,Al(t)) EJ\C]R 
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where A is a given bounded set of values representing the parameter con

straints. The adaptation law may be, again generally, expressed by the 

equation 

(7.1.12) 

- a with solutions ~A (A ,to'·) JR -+ A for a suitably designed f (.) 
a 

The 

adaptive controller 

u(t) E P()t,X,t) (7.1.13) 

may obviously be used in almost all of the so far discussed objectives, 

and in particular in the presently described path tracking. The topic has 

already a vast literature. The reader may like to see Le Borgue-Ibarra

Espiau [lJ for review, and also Abele-Sturz [lJ, Aksenov-Formin [lJ, Gusev

Timofeev-Yakubovich [lJ, Corless-Leitmann [lJ-[5J, Corless-Leitmann-Ryan 

[lJ, Cvetkovic-Vukobratovic [lJ, Gusev-Yakubovich [lJ, Hanafi-Wright-Hewit 

[lJ, Horowitz-Tomizuka [lJ, Kulinich-Panev flJ, Koivo-Paul flJ, Luh-Lin 

[lJ, Ryan-Leitmann-Corless flJ, Slotine-Sastry [lJ, Stoten flJ, Takegaki

Arimoto [lJ,[2J, Timofeev [lJ, Timofeev-Ekalo [lJ, Tkachenko-Brovinskaya

Kondratenko [lJ, to name a few. The technique leaves a choice in the type 

of the adaptive signals used, for example, local parametric optimization 

rules (see Asher-Matuszewski [lJ, Barnard [lJ, Kulinich-Panev [lJ), 

Liapunov design (see Lindorf-Caroll [lJ) or Popov hyperstability (see 

Jumarie [1]). 

On the other hand, one may immediately observe that once y(t) is made 

into a nominal trajectory of some dynamical system, we may as well not only 

track such a trajectory but also some set of nominal parameters 

X (A , ... ,A ~)T E A of the system, either constant or time varying, 
m ml m" 

that is, we may require 

e (t) -+ 0 , (7.1.14) 

as t -+ 00, or capturing e (t) ,eA (t) in some TC about zero. The para

meter tracking is not necessary, but it makes the control more efficient. 

It amounts to tracking a desired dynamics rather than a path. We may then 

immediately ask the question whether the dynamical system to be followed 

must necessarily be the same type as the control system to follow. We 

answer the question negatively, that is, admitting an arbitrary system, 

perhaps much simpler, as the target, provided there is enough compatibility 

between the controlled and target systems for achieving the convergence of 

states and parameters, e.g. (7.1.14), cf. Shaked flJ. With this interpre

tation, our control objective changes to tracking of a reference dynamical 

model 

328 



www.manaraa.com

f (x ,u ,x ) 
m m m m 

(7.1.15) 

with trajectories ~m (x~,·) : JR ~ /':" rather than a nominal trajectory. 

Obviously, in particular, fm (.) may simply be our tracking f (.) with 

the reference signal or nominal control u substituted. Note that (7.1.15) 
m 

allows for this option. The scheme of action is seen in Fig. 7.1. 

Again in particular, the reference signal ii may appear in (7.1.15) 
m 

only as a factor reducing the misalignment between the two inputs and is 

then assumed as equal to the currently used control 

Um 
-"';';';"---1~ REFERENCE MODEL 

ii (t) :: u(t) 
m 

L-__ """':'-'_I ADAPTIVE LAW 1+------' 

Fig. 7.1 

In recent years, model tracking has become a very popular way of 

controlling mechanical structures. It began with autopilots, primarily in 

VTOL aircraft, see Narendra-Tripathi [lJ, and soon had been applied in all 

aircraft industries, see Landau-Curtiol [lJ, Kaufmann-Berry [lJ, Stein

Hartmann-Hedrick [lJ, Athans-Castanon-Dunn [lJ, Azab-Nouh [lJ, Vassar

Sherwood [lJ, Kanai-Uchikado [lJ, Rid~ely-Banda [lJ, as well as other 

technologies, see for general reference Barnard [lJ, Winsor-Roy [lJ, 

Donaldson-Leondes [lJ, Hague-Monopoli [lJ, Van Amerongen-Nieuwenhuis flJ, 

Laskin-Sirlin [lJ, just to name a few. Very good references to work at 

early stages is given in Asher-Ardasini-Dorato [lJ. Recently the model 

following control dominates robotics, for references, see Skowronski [32J, 

[38J, and active control of space structures, see Nurre-Ryan-Scofield

Sims [lJ, Barnard [lJ, Klimentov-Prokopov [lJ, Kosut et al [lJ. 

Model tracking is realized basically along two different methodologies: 

1. Self-Tuning Regulation (STR), and 

2. Model Reference Adaptive Control (MRAC). 

The STR is stochastic in nature and usually reduces to three steps. First, 

we choose the parametric structure in such a way as to be able to adapt a 

time-discrete representation. Second, we estimate on-line the system 
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X 
I----..-~ MECHANICAL r---' 

STRUCTURE 

Fig. 7.2 

PARAMETER 
ESTIMATION 

parameters by using least squares or the maximum likelihood technique. 

Third, we design the on-line controller based on the estimated parameters. 

To do so, for linear systems it is possible to use the so called minimum 

variance or pole-placement techniques. The block diagram of STR is shown 

in Fig. 7.2. A very good review of the up-to-date development of STR may 

be found in Tosunoglu-Tesar [lJ or in Astrom [lJ. The latter also compares 

STR wi th MRAC. 

MRAC is deterministic and allows parameter identification, if useful, 

by an adjoint prediction technique which is also adaptive, and in practical 

terms removes all influence of uncertainty in the system. MRAC started 

long before STR but had been developed for a long time only for the class 

of linear systems. It is described in Section 7.3. 

Closing this section, we must comment on the option of being able to 

extend our path and model following methods to the case of path and model 

avoidance. The technique is entirely symmetric. This is another advantage 

of using the control methods outlined in this section. Very little has 

been developed in path and model avoidance otherwise, in spite of the 

obvious fact that technological applications of control for such an objec

tive are abundant - it is as much necessary to avoid an undesired path as 

it is to follow a desired one. 

The first group of methods in path avoidance relies, similarly as for 

tracking, on considering the a:nti-target path y (t) as T , envelop it 
A A 

with a suitable A and use the conditions for avoidance described in 

Chapter 6. The implementation of the above is immediate and it is left to 

the reader. Still wi thin this group of methods for avoiding T A an adap

tive controller may be used, interested readers are advised to read Corless

Leitmann-Skowronski [IJ. Model avoidance will require a different 

approach and is discussed in Section 7.5. 
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EXERCISES 7.1 

7.1.1 Find the control program that makes the system 

II ~ - 22 2 with a,b,c > 0 , u" u, to follow the curve y : aX I + x 2 = 2r , 

r = const. Describe the state space pattern and determine the 

region of controllability. 

7.1.2 Design the controller which forces the system 

f~l +dICrIICr I +k1ql +k 12 (ql -q2) -b l : (ql _q)3 

1 q2 +k 2q 2 +k 21 (q2 -ql) +b 21 (q2 -ql) = 0 , 

with kl2 = -k 21 < 0, b l2 = -b 21 < 0, k l ,k 2 > 0, d > 0, 

track its own conservative subsystem on the global region 6 L 

7.2 CONFIGURATION PARAMETERS 

to 

It is interesting to see which parameters of the system can be changed 

to cause sUbstantial and effective adjustment, that is, where we actually 

locate our Ai (t) , i = l, ... ,l in the considered dynamics. 

In terms of the specific model (2.2.1) I, the selector equation of 

(7.1.11): 

(7.2.1) 

will, in general, take the format 

} (7.2.2) 

and similarly for (2.2.2) '. In the above, all the characteristics include 

X not because the corresponding forces are adjustable, but because in 

particular the inertia of the system could be made adjustable, and hence 

subdividing by such inertia when decoupling the system dynamically, we make 

all the characteristics related to X in a purely formal way. Physically, 

the option of adjusting parameters is limited to those of damping (viscosity, 

general resistance, lubrication, etc.) and potential forces. In the latter 

case, adjustment would mean a change in gravity via compensation, payload, 

flight altitudes, etc., generating the change in inertia mentioned above. 

For the case of elastic forces, we can expect adjustment in parameters 

related to suspension of all kinds, joining of substructures, geometric 
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constraints, thus also vibration modes, and other types of what we call 

configuration parameters. Let us elaborate briefly on the case. 

In general terms, the configuration parameters describe relative 

positions of subsystems, thus determining the configuration of the total 

system. In particular, it leads to specific constraints imposed upon q, 
in turn resulting in corresponding reaction forces which, possibly, replace 

such constraints. To give examples, we may quote bearings transverse 

positions of a rotor or a crankshaft, shifts and tilts of bearings, cf. 

Parszewski-Krotkiewski [lJ, dimensions or positions of the bearing pedes

tals, interconnections between a turntable, tool supporting structure and 

tools in a lathe, cf. Parszewski-Chalko [lJ, positions of joints (lengths 

of rods or links) of a truss or a robotic arm, cf. our Section 1.6, Fig. 

1.24, to name a few. 

The reader may also recall our Section 5.7 and the eccentricity depen

dent radial stiffness KF of the suspending fluid film, see Fig. 5.23(a), 

which obviously is one of the force characteristics influencing the motions 

under study. In this sense the eccentricity is a configuration parameter 

acting on the joint between the bearing and the shaft. From our discussion 

in section 5.7, it is clear that the eccentricity influences the amplitude 

of vibrations (whirl-whip) acting through KF . In fact it may cause the 

same effect by producing reaction forces in the bearing. It is particularly 

significant in a multi-bearing shaft, see Parszewski [IJ. We may thus 

think of controlling the vibrations by adjustment of the eccentricity. 

Krotkiewski [lJ verifies the above experimentally on a stand 

symbolically shown in Fig. 7.3 with the inner surface of the bearing 

replaced by an elastically suspended panel, whose deflections are measured 

by sensors S and which changes the eccentricity by changing its position. 

This change is adaptively controlled using two x,y-axial actuators F ,F 
x Y 

The stand is also a good illustration of the electromagnetic suspension 

with the electromagnetic field replacing the fluid, thus making the 

suspension and eccentricity more easily accessible for direct active control. 

We mentioned the case in section 5.7 quoting the relevant literature. Such 

a direct control, without adaptation, simply ignores the influence of 

external forcing, assuming the system autonomous and thus acting through 

internal parameters. with the task of controlling the self-sustained part 

of vibrations, as discussed in Section 5.7, such posing of the problem 

suffices. However, for externally forced systems, the parameters should 

retain their parametric character while still influencing the controller. 
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This is done via some dynamics imposed on them and generated by the 

adaptation mechanism (7.1.12), for our particular case shown in Fig. 7.3. 

The controller generating an external forcing, a torque, acting upon the 

shaft is also independently related to the state of the system through 

another part of the control program which refers to other than eccentricity 

influenced features of the motion concerned. In tllis setting, the resul

tant signal adaptive feedback control is more effective, as it may ref£ect 

all aspects of the complex structural model concerned and of the composite 

objective. such a controller is shown in Fig. 7.3 

Fig. 7.3 

The above is in fact applicable fairly generally. An adaptive, that 

is, on-line adjustment of the configuration parameters of arbitrary nature 

leads in general to on-line relative reconfiguration of subsystems, hence 

also to restructuring. In control theoretic terms this means self

organization of the system. It gives an additional option of control via 

selection and change of geometric constraints specified by an extra designed 

dynamics in terms of the adaptive laws (7.1.12). 

The functional shape of potential forces, and thus potential charac

teristics, is determined by static measurements, that is, when the system 

is assumed to be in equilibrium. This refers, in particular, to the 

configuration parameters being part of such characteristics. When the 

number of parameters does not exceed the number of the imposed equilibrium 

conditions, the change of such parameters is of little effect on the system 
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dynamics, cf. Parszewski [IJ. For instance, in the multi-bearing flexible 

shaft system, a small variation in the length of links will change only 

slightly the positions of the nodes, or small traverse displacement (shifts 

and tilts) of bearings will have little effect on stiffness and damping, 

provided the varying parameters are statically determinable, that is, may 

be found from static equations of the system. In such circumstances adding 

the adaptation mechanism to the external (time explicit dependent) feedback 

control of the system is not really effective and thus not economic as well. 

When, however, the number of parameters exceeds the number of static 

conditions, that is, when the parameters become statically undeterminable 

or hyperstatic, additional conditions can be imposed on the system 

influencing the dynamics significantly. These conditions may be of three 

kinds: Give fixed values of the parameters, give algebraic conditions 

guaranteeing their move along a specific curve, or give their dynamics, 

that is, establish them as solutions to some differential equation, e.g. 

(7.1.12). The latter, obviously, makes them adaptive. 

BEARING 2 _ _~----

BEARING' I @/Y » ,/ _____ . ------ 16 INDEPENDENT PARAMETERS 
_ ----- .4 EQUILIBRIUM CONDITIONS 

... .- 16-.4 = 12 ADAPTIVE PARAMETERS 
.......--: 

Fig. 7.4 

EXAMPLE 7.2.1. In the multi-bearing rotor support system shown in Fig. 7.4, 

see Parszewski [lJ, the shaft and each bearing may be considered a separate 

subsystem with regard to shifts and tilts of the bearings. Then the number 

of independent configuration parameters is four times the number of bear

ings, whereas the number of equilibrium conditions is four: two per axial 

plane. The positions of centers of any two bearings are fixed and provide 

a reference axis. 

Moreover the conditions on the shaft and bearings can be expressed in 

terms of the distribution of reactions in bearings. The reactions determine 

bending moments, deflections of the shaft and the eccentricity parameters 

concerned. It is shown, thus, that some reactions can be taken as controll-

ing parameters, see parszewski-Krotkiewski [IJ. o 
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7.3 MODEL REFERENCE ADAPTIVE CONTROL 

The method began in 1966 with the work by Butchard-Shackcloth [lJ and 

Parks [lJ. It then developed primarily along the avenue of applying the 

Liapunov formalism called Liapunov Design, see Hang-Parks [lJ, James [lJ, 

Monopoli [lJ, Narendra-Valavani [lJ for exposition of basic facts in this 

direction. The other two avenues of research: popov Hyperstability Theory 

and Variable Structure Systems (VSS) were developed later and on the margin 

of the Liapunov Design, cf. Taran [lJ, Emelianov [lJ, Drazenovic [lJ, 

Utkin [lJ. The basic monograph on MRAC and the account of work in all 

directions was written by Landau [2J, while a very good review of earlier 

works can be found in Landau [lJ. Unfortunately most of the useable 

results, almost all until recently, are obtained for linear systems. This 

is due to the fact that the classical MRAC technique is based on the error 

equation resulting from subtracting the dynamics of the model from that of 

the controlled system. Such an equation is very difficult to obtain in 

terms of the error variable iii ~ x -x for nonlinear functions f(x,u,w,X,t) 
m 

and f (x ,u ,~ ). A nonlinear extension of MRAC was needed to cater for 
m m m m 

the real-life problems, see Choe-Nikiforuk [lJ. The results toward such an 

extension are far less numerous than those on classical MRAC. Early 

suggestions belong to Lindorf IIJ, Krutova-Rutkovskii [lJ-[5J, Lowe-Rowland 

[lJ, Lal-Mehrorta [lJ, Klimentov-Prokopov [lJ, all including nonlinearities 

as partial characteristics. 

A number of approximate techniques (local linearization, cancelling 

nonlinearity by the controller, decoupling) appeared later in MRAC applied 

to nonlinear robotic manipulators, see Tomizuka-Horowitz [lJ, Dubovsky

DesForges [lJ, Balestrino-DeMaria-Sciavicco [lJ, Stoten [lJ, Balestrino

DeMaria-Zinober [lJ, Erzberger [lJ, Liegeois-Fournier-Aldon [lJ. The idea 

of abandoning the error equation altogether and replacing the asymptotic 

convergence of e (t) to e (t) :: 0 by such convergence to a "diagonal" set 

in the product space of (x,x)T belongs to Skowronski [26J,[34J, slightly 
m 

later and in a different way suggested by Jayasuria-Rabins-Barnard [lJ. It 

was later developed and applied to robotic manipulators and flexible 

structures by Skowronski [35J-[38J,[40J,[42J,[44J,[46J. Prior to this 

development, the nonlinear MRAC has been designed for the Leitmann system 

in Corless-Goodall-Leitmann-Ryan [lJ. Finally Flashner-Skowronski [lJ,[2J, 

Skowronski-Singh [lJ, returned to the error equation which appears to be 

easily handled for Hamiltonian models of mechanical systems. 

We begin the description of MRAC with a brief outline of the linear 

technique, perhaps in a slightly simplified format. The block scheme is 
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shown in Fig. 7.5. We consider the linear system (3.1.4) as 

x = A(t)x + B(t)u (7.3.1) 

where as before A,B are the system matrices of appropriate dimensions. 

We let the reference model be given as 

x=Ax+Bu (7.3.2) 
m m m m m 

where x (t) E 6 is the model state vector, u (t) E U model control 
m m 

vector while Am,Bm are constant matrices of the same dimensions as 

A(t),B(t). The control urn is assumed to have been already selected to 

secure some desired behavior of the model, usually urn = u . 

Um 
-_~-~ REFERENCE MODEL 

ADAPT I VE LAW I4----'E;o..R_R_O_R __ ..... 

Fig. 7.5 

We denote the state error again by Xm (t) for all 

t 2: to and the parameter error by Ae(t) 

<Ht) = x(t) 

~ A(t) - A 
m' B (t) ~ B(t)-B 

e m' 
with A(t) ,B(t) adjustable, t 2: to Subtracting (7.3.2) from (7.3.1) 

gives the mentioned error equation 

A e + A (t)x + B (t)u 
m e e 

(7.3.3) 

To concentrate on tracking rather than other fringe objectives, we 

assume that the control vector u has been already selected to secure some 

objective which is not incompatible with tracking. The plant system 

(7.3.1) follows the model, or more exactly in this linear version, the 

plant converges asymptotically to the model if 

e (t) -+ 0 , B (t) -+ 0 as t -+ 00 
e 

(7.3.4) 

which thus becomes our present tracking objective. The uniform asymptotic 

stability of the zero-error e(t) = 0 is attained when we have a Liapunov 

function that is a nesting square form and possesses a negative definite 

derivative. The obvious candidate is the traditional quadratic form 
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(7.3.5) 

where P = (p .. ) is a positive definite symmetric matrix and a .. , b .. 
lJ elJ elJ 

are components of Ae(t) , Be(t) , respectively. The only condition to 

check is the negative derivative, the other two being obviously satisfied. 

Differentiating (7.3.5) and substituting (7.3.3), we have 

a .. a .. + 2 L LJ. b .. S .. , 
elJ elJ ~ elJ elJ 

or 

V(t) 

+ 2 L. L. a .. a .. + 2 L. L. b .. h .. 
l J elJ elJ l J elJ elJ 

. ) (7.3.6) 

The negative definiteness of the first term on the right hand side of 

(7.3.6) follows immediately from the Liapunov Matrix Equation (3.1.5). 

Granted this, we need to reduce the other terms to zero. Simple calcula

tion shows that the latter happens if the adaptive laws hold, 

a .. 
elJ 

Note that since 

where a .. ,b .. 
lJ lJ 

1 
Am,Bm are constant, we have 

are coefficients of A(t),B(t) 

a .. 
elJ 

a .. 
lJ 

b .. 
elJ 

(7.3.7) 

b .. , 
lJ 

When (7.3.1), (7.3.2) are replaced by the nonlinear selector equation 

(7.2.1) and the reference model (7.1.15), respectively, the subtraction of 

(7.1.15) does not generate such "nice" functions of e (t) on the right 

hand side, like in the linear case. In fact such subtraction may not 

generate any function of e (t) at all. Consequently it may become feasible 

to use the product-state-space technique mentioned at the opening of this 

section. 

Before describing the technique, let us make a few assumptions about 

the reference model (7.1.15). First, since it is our design, there is no 

uncertainty involved, and the model should be made as simple as possible 

to reduce computation time. We shall also tend to make it autonomous, and 

with well defined trajectories, but it will help considerably if it is 

equilibria compatible with the controlled system, that is, potential 

characteristics of the model are such that it has the same number of 

equilibria in similar locations or, at best, the same equilibria as the 
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controlled system. If the equilibria of the model are for some reason 

prescribed, we can make the parameters of potential characteristics of the 

controller system adjusted so as to change its equilibria, see Section 2.1. 

Rewriting (7.1.15) in the mechanical format, we assume in general 

q . +D . (q ,0 ,~ ) +IT . (q ,~ ) = F . (q ,0 .,U ), i=l, •.. ,n (7.3.8) 
'"Inl. ml. '"In '"In m ml.. '"In m ml. '"In '"Inl. m 

where ~ (t) E Llq , '\n (t) E Llq are the Lagrangian model displacement and 

velocity variables, and Dmi (.),ITmi (.), the non-potential (damping) and 

potential characteristics. Then for compatibility we assume the equilibria 

defined by the same relations as for the controlled system: 

~i = 0 , 

IT . (qe, 0) 
ml. '"In 

D . (qe,O) 
ml. '"In 

o 
(7.3.9) 

o 

with 
_e . 
~ denotl.ng the equilibrium positions of the model. If no adjust-

ment 
e _e ~ _e 

of q is made by adaptation: q T ~ , then we better have the 

a-priori assertion that 

Next, it is feasible to assume that we do not make the tracking all 

over JRN or even allover 1'>.. Let us take a subset 1'>.0 of 1'>., possibly 

equal to 1'>., on which the tracking should occur and thus in which the model 

trajectories must be bounded by design. We assume 1'>.0 strongly positively 

invariant under trajectories of (7.1.15), recall Section 3.1, or which is 

the same, positively Lagrange stable: 

(7.3.10) 

inconsequent of whether this has been achieved by the choice of U,~ or m m 
of fm (.) in (7.1.15). Trajectories do not leave 1'>.0 unless passing 

through the part of the neighborhood N ('dI'>.O) of the boundary cMo which 

belongs to 1'>.0' that is, the set N(31'>.0) n 1'>.0 We shall stop them from 

doing so, if there is a C1-function Vm (·) : N(31'>.0) n 1'>.0 ->- lR, with 

v inf V (x ) Ix E 31'>.0 m m m m 

such that for all points x E N (31'>.0) n 1'>.0 m 

(i) V (x ) ~ v ) m m m 

(ii) V (x ) < 0 
m m 

Indeed, if any model trajectory 

then there is tl > 0 such that, by (i) we have 

which contradicts (ii). 
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Consider now the total energy of the model E (x) together with the 
m m 

corresponding energy surface H • 
m 

Since (7.3.8) has the same number of 

equilibria as (7.1.15), the extrema of H 
m 

are close to those of H, with 

a correction to E+ or E when our aim is to bound motions below (or above) 

some ZC. Design of the regular regions of Hm is quite arbitrary, but we 

may like to follow the shape of H. 

Choosing Vm(xm) = Em(Xm), the conditions (i), (ii) hold if we design 

the model such that for all xm E N (Cl6 0 ) n ~o' we have 

I7E (x ) Tx ~ 0 
m m m 

I7E (x ) T f (x , U , X ) < 0 • 
mm mmmm 

(7.3.13) 

(7.3.14) 

This corresponds to 6 0 located in an energy-cup of Hm about some Dirichlet 

stable equilibrium (minimum). According to what we said about following 

the shape of H, such a cup would naturally belong to a local or in-the

large cup of H. If so, then we would like to invert the inequalities 

(7.3.13), (7.3.14), when our 6 0 is located about a Dirichlet unstable 

equilibrium (threshold) of H. Indeed, observe that letting then 

V (x ) = -E (x) and inverting simultaneously both inequalities, the con-
m m m m 

ditions (i), (ii) still hold, and the positive Lagrange stability is 

preserved. 

The assumption (7.3.13) is slightly more demanding than the condition 

(2.4.21) which may be used to justify it, see Yoshizawa [IJ. The proper

ties of the energy flow which had led to (2.4.21) are valid here as well. 

When Cl6 0 is specified in terms of an Em-level, it may be shown that 

(7.3.13), (7.3.14), or their inverted counterparts, are also necessary for 

the positive Lagrange stability on 6 0 located in a cup or about a threshold 

respectively. 

Our technique is based on the fact that x x is attained on a 
m 

"generalized diagonal" set in the space of product vectors (x,x) T. Let 
m 

us thus introduce the vector X (t) 6 (x(t),x (t))T ranging in 
m m 

6 2 ~ 6 x 6 C ]R2N and form the product system of (7.1.11), (7.1.12), (7.1.15) 

but with a well specified model (7.1.15) and with the adaptive laws (7.1.12) 

F = - - - T 
Then let built-in, so that we obtain the vector (f,fm,fa ) . 

a(t) 
6 

X(t) X X const generating <itt) = X(t) t ~ to The - = , 
m m 

vector ii ranges in A as much as X did. The above allows us to form the 

product selector equation 
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(7.3.15) 

of the contingent product system 

(7.3.16) 

A; -0 -0 ,2 A -0 -with the Filippov-type solutions 'I'(Xm,a ,to'·) : lR"*o x , Xm=Xm(t o) , 

Cio = Ci(t o)' to E lR, generating at each 6i:!,Cio) E /';2xA the class of 

motions K(Xo ,Cio). Then we define the "diagonal" set in /';2 x A, 
m 

(7.3.17) 

and its ~-neighborhood: 

(7.3.18) 

. h II II b . . 2N 'l . 1 db' w~ t . e~ng a norm ~n lR , lR respect~ ve y, an ~ > 0 e~ng a 

stipulated constant specifying the esti~ate of the precision in tracking. 

The following definition describes our present objective of stabilized 

tracking. 

DEFINITION 7.3.1. The system (7.1.11) tracks the reference model (7.1.15) 

on /';0 with precision ~ > 0, if and only if there is a control program 

P(·) , an adaptive law f (.) and a time interval 
a 

is strongly positively invariant under P(·) and 

(xo,Cio) E /';2 x A implies 
m ° 

- -0 ° { <P(Xm'Ci ,t) E A~, Vt ~ to +T~ . 

T~ < 00, such that /';0 

~(xo Cio .) E K(Xo Cio) 
m" m" 

(7.3.19) 

In the above 1'12 ~ /'; x 1'10 • 

° ° 
When T~ is stipulated, we refer to tracking 

"after a given T ". 
~ 

The block scheme of tracking is seen in Fig. 7.6. Given the set /';0 

where we want the tracking to occur, let N[Cl (/';~ x A) ] be a neighborhood 

Um 
--..-"---t~ REFERENCE MODEL r--""";';':'--' 

ADAPTIVE LAW 14------.......J 

Fig. 7.6 
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of the boundary a (l'.~ x l\) of the region l'.~ x A in :ffi.2N+~, and define the 

semi-neighborhood Ns = N[a (l'.~ xl\) J n l'.~ x A and the relative complement 

Moreover, let D (open) ::J dJ be such that D n /vi = <P , 
11 

and introduce two C1-functions V (.) N -+ lR and VlI (·) : D -+ lR 
s S I-' 

v V (X ,a) Iv(x ,a) E a (l'.~ xl\) 

1 
s s m m 

v inf V (x ,a) I (X ,a) E aM n dJ 
11 11 m m 11 11 
+ sup(X ,a) I (X ,a) E a (l'.~ xl\) naT V11 m m 11 

(7.3.20) 

The first relation requires forming Vs (·) from a suitable 

taken as a level curve of this function, or forming the boundaries of 

l'.o ,A from level curves of suitable V (.) 
s . In the latter case, smaller 

l'.o ,A than those really desired will be the secure choice, see Fig. 7.7. 

M 

Fig. 7.7 

The following conditions have been proved in Skowronski f34J-[38J. 

CONDITIONS 7.3.1. The system (7.1.11) is strongly controllable on l'.o for 

tracking the model (7.1.15) according to Definition 7.3.1, if given 

there is P(·) and two C1-functions 

(i) 

(ii) Ii U E P(X ,a) , 
m 

I/v (x ,a) T· F(}{ ,a,u,w,t) < 0, 
s m m 

(iii) 

V (.) V (.) 
s '11 

v W E W 

as defined above 

(7.3.21) 
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(iv) (X ,ii) 
m 

(v) VUE P(X ,ii) 
m 

there is 

increasing, such that 

E D n M 
~ 

c( II (X ,a) II) 
m 

> 0, continuously 

\Iv (X ,a)T.F(X ,a,u,w,t),,; -c(II(X ,a)ll) ,VWEW. 
~ m m m 

(7.3.22) 

The first two conditions (i),(ii) imply the positive strong invariance 

of L'>~ x A. Indeed, suppose that some product motion ~(Xo ,ao ,JR+) from N 
m s 

crosses a (L'>~ x A) Then by (i) there is t[ > to such that V s (~(t[» 

= v ~ V (~(to» which contradicts (ii), see Fig. 7.7. Granted the s s 
positive strong invariance of L'>2 x A, let us consider an arbitrary 

° ~(Xo ,ao ,JR+) from cM • Integrating (7.3.22) along such a motion, we obtain 
m ]J 

the estimate of time spent in cM : 
]J 

[VlI (XO ,ao) - V (X ,a) ] 
... m ~ m t ,,; to + (7.3.23) 

c (11x ,a) II) 
m 

By (iii), V (X ,a) ~ 0 , 
]J m 

<v+ 
- ]J , and from (7.3.23), 

E L'>~ x A, which implies that there is 

depending only upon the diameter of 

motions, such that for any t ~ to + T~ , the 

no return to cAljJ as upon such return there 

such that some ~(Xo aO JR+) from M crosses m' , ~ 

whence V]J (x;,ao) - V~ (xm,a) 

c-=infc(Ii(X ,a) II) I(x ,a) 
m m 

(7.3.24) 

and independent on the product 

motions are in M There 
]J 

is 

would be t3 > t z ~ to + T jJ , 
aM upon which by (iv) , 

~ 
- -0 ° V~ (<jJ (xm,a ,t 3 » v~ ~ v~(x;,ao) contradicting (v), and completing the 

proof. 

REMARK 7.3.1. When is stipulated, c > 0 is found from (7.3.24), 

and (7.3.22) becomes: 

\IV «X ,a)T.F(x ,a,u,w,tll ,,; -(V~/TlI) , 
~ m m. ... .... 

(7.3.25) 

for all w E Wand, together with other Conditions 7.3.1, implies the 

hypothesis. 

Using the same argument as for Corollaries in Chapter 5, we obtain 

the following corollary which gives the program P(Xm,a). Denote 

L (X ,a,t,ii,w) 
s m 

~ \Iv (X ,ii)T·F(X ,a,t,ii,w) 
s m m 

L~(Xm,a,t,u,w) L'> \Iv (X ,a)T·F(x ,a,t,u,w) 
~ m m 
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COROLLARY 7.3.1. Given 

u*,w* such that 

to E lR, if there is a pair 

L (X ,a, t, u* ,w*) s m 

L (X ,a,t,u* ,w*) 
f.l m 

min 
u 

max 
u 

max 
w 

min 
w 

Ls (Xm,a,t,u,w) < 0 , (7.3.26) 

L (X ,ii,t,u,w) ~ -c (7.3.27) 
f.l m 

then the conditions (ii),(v) are met with 

deduce 1\(.) from (7.3.26), (7.3.27). 

and one can 

Observe that the argument in the proof of Conditions 7.3.1 leading to 

contradiction of (i) and (ii), remains valid when we invert both inequal

ities. This implies the following. 

COROLLARY 7.3.2. Conditions 7.3.1 hold if the inequalities in (i) and (ii) 

are both simultaneously inverted. 

Let us now take ~o located in an energy cup and propose the functions 

where 

Em(X) 

along 

v (X ,a) ~ E (x) + E (x ) + aa , 
s m m m m 

v (X ,a) ~ 
f.l m 

{ IE (x) - E (x ) I + aa , m m m 

aa, Ii (X ,a) E M n 
m f.l 

D , 

- /'; (sign a l , ... , sign al' with a. (t) a = , 
1. 

is the energy function Em(·) with x 
m 

the motions of the system (7.1.11) • The 

(7.3.28) 

(7.3.29) 

t- 0 for all t ~ to , and 

replaced by x, that is, 

condition ai t- O follows 

from the adaptive laws introduced below, see (7.3.42), and is justified by 

the fact that adaptation is redundant for a = 0 • 

-
With a suitable choice of Ns covering N('iM o) n ~o the assumption 

(7.3.13) implies (i) of Conditions 7.3.1. Also, by the character of the 

function of energy Em(·), (iii),(iv) hold. 

It remains to check (ii) and (v). 

(7.3.29) with respect to time. Denoting 

To do so we differentiate (7.3.28), 

oE ~ E (x) E (x ) , one obtains 
m m m m 

where 

V (X ,a) 
s m 

v (){ , a) 
].! m 

E (x) + E(x ) + aa , 
m m 

r Em (x) - Em (xm) + aa , (){m,a) E cM].!, for OEm ~ 0 , 

1 Em (xm) - Em (x) + aii , (Xm,a) E cM].!, for OEm < 0 

a&, for (}Cm, ii) E M].! n D 

(7.3.30) 

(7.3.31) 

343 



www.manaraa.com

E (x ) = VE (x ) Tf (x ,A ,u ) , 
mm mm mmmm 

(7.3.32) 

E (x) = vE (x) Tf(x,t,u:j,w) 
m m (7.3.33) 

The following two conditions are based on Corollary 7.3.1 and secure (ii) 

and (v) of Conditions 7.3.1. 

(I) Control Conditions. 

min max VE (x)Tf(i,t,u:,~,w) 5: E (x ) 

u w 
m m m 

for OE 2: 0 , 
m 

(7.3.34) 

max min VE (x)Tf(x,t,u,~,w) 2: E (x ) , 
u W m m m 

for OE < 0 , 
m 

(7.3.35) 

(II) Adaptation Condition. 

ex oj 0 • (7.3.36) 

Indeed, substituting (7.3.14), (7.3.36) into (7.3.30), we check (ii) to 

hold on Ns ' Checking (v) is immediate upon substituting (I) and (II) into 

(7.3.31). In the above, c- > 0 is a suitable constant for (v) in 

Conditions 7.3.1, but is calculated from (7.3.24) for the case of stipulated 

T • 
11 

We must now design a control program P(·) implying (I), and the 

adaptive law f (.) 
a 

of (7.1.12) to imply (II). 

Substituting (7.3.8) into (7.3.32), we obtain 

(7.3.37) 

Similarly, (7.3.9) sUbstituted into (7.3.33) gives 

E (x) = 'In IF. (q,q,u) +R:(q,q,w,t) -D.(q,~,W,A)Jq. 
m Li=l 1 1 1 1 

+ In
1' __ 1 [IT . (q,A ) -IT. (q,A,W)Jq. , 

ml m 1 1 
(7.3.38) 

- . . 
with the proviso of f(q,q,w)q = 0, based on the earlier mentioned physi-

cal assumption that the Coriolis-gyro forces do not change the energy, 

thus that their power vanishes. 

Now, let w* be the corresponding extremizing value of w in (7.3.34), 

(7.3.35). The condition (7.3.34) is satisfied if 
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<;F .(0,0,u)6. 
ml "m "m m"ml 

+ [Di(ij,q,A,~*)4i - Dmi (~'~'~m)~iJ 

+ [IT. (ij,A,~*)4. - IT . (ij,~ )4. J i = 
1 1 ml m 1 

- R. (ij,~,~*,t)4') 1 1 

1, .. . ,n , 

for OE 20, and similarly (7.3.35) is satisfied if 

max_ F. (ij,q,~*,ii)4. 2 F . (q ,~ ,u )6 . - R. (ij,~,~*,t)4') u 1 1 ml"m"m m --ml 1 1 

+ [D. (ij,~,~,~*)4. - D . (q ,~ ,X )6 . J 
1 1 ml"m"m m "ml 

+ [IT. (ij,X,~*)4. - IT . (ij,~ )4. J, i = l, ... ,n 
1 1 ml ml 

(7.3.39) 

(7.3.40) 

for oE < o. Specifying the gear function slightly further by collating 

- ~ - -* ~ - ~ -* the actuators with DOF, we may assume Fi (q,q,u,w ) - Bi (q,q,w )ui ' where 

Bi (.) are positive functions, with r = n, see Section 3.3. Then we may 

design P(·) from (7.3.39) as 

I <; _11_. -I [F . ~. - R. 4 . + D ·4 · - D . ~. + 11. 4 . 
Bi qi ml 1 1 1 1 1 ml 1 1 1 

-IT.(q)4.J vI4.12S.; ml - 1 1 1 

suitable constant V 14i l < Si ' i = l, ... ,n , 

(7.3.41) 

for OE 2 0 . 

from (7.3.40). 

A similar controller is obviously obtained for OE < 0 

In the above Si are calculated as many times before and the arguments 

of the functions dropped for clarity of expression whenever confusion may 

not occur. The inequality in (7.3.41) reflects the fact that the program 

is set valued. 

When r < n, for some i we would have to design in (7.3.41) a sum 

over n - r terms; apart from that, the procedure is the same. Obviously 

the above applies also to the OE < 0 counterpart of (7.3.41). 

Turning now to the design of an adaptive law, generally written as 

(7.1.12), observe that (7.3.36) is implied by 

a. 
1 

i=l, ... ,l. 

Indeed, substituting 

i , we obtain 

a. = la.1 /sgna. into (7.3.42) and summing up over 
1 1 1 

aa=-[c-+ IE (x)IJL. la·1 
m 1 1 

Observe further that given x(t) (7.3.42) is a first order linear homo-

geneous equation in a. (t) 
1 

with exponential solutions in closed format, 
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whose sign depends upon our choice of the initial 

¥t ~ to . 

sgn o,~ 
~ 

sgn o,i (t) 

Note here, that as long as the adaptive laws (7.3.42) imply the 

adaptation condition (II), (7.3.36), which in turn, togebher with (I) 

implies Conditions 7.3.1, we have the main goal of adaptation satisfied -

and the fact that the solutions of (7.3.42) decay asymptotically to zero 

producing A(t) ~ Am is secondary. In fact, in many applied scenarios, 

it may be irrelevant, X may be ignored, technically put to zero, whence 
m 

(7.3.42) would become a dynamics imposed upon ~(t) alone. In such a case 

it may be preferable to redesign (7.3.42) to, say, 

~. = c- + IE (x) I , 
~ m i = l, ... ,l (7.3.42) I 

which gives the adaptation condition (II) as 

which for suitable c- also satisfies (ii), (v) when substituted jointly 

with (I). The preference follows the argument that we do not necessarily 

want to have A(t) ~ 0 during the tracking. In general, the suggested law 

depends on the designer, who must rely on physical requirements exercising 

his choice. 

EXAMPLE 7.3.1. 

A n-joint planar, open chain arm in a robotic system can be represented 

by a combination of two DOF, RP-units (Rotary-prismatic) displayed in Fig. 

7.8. Let us investigate such a unit. We take the Lagrange or joint 

Fig. 7.8 
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coordinates as indicated, with r const at the rotary 

joint 1. The equations of motion (1.5.19) give 

(7.3.43) 

where now 
R Qi (t) , i = 1,2, represent external perturbations, and 

are actuator controls at joints 1,2 respectively. The equations (7.3.43) 

represent the plant. 

We take the possible payload on the gripper as uncertain but within a 

known bound, which makes the mass m2 and the perturbations Q~ ,Q~ unknown 

but bounded in some known W, specified by 

m Q 
+ 

Q i 1,2 , (7.3.44) 

with - + + m , m ,Q ,Q posi ti ve constants. Consequently inertia coefficients 
2 2 (m1r 1 +m2q 2) , m2 and the gravity force m2g sinql are noise polluted. 

On the other hand, since the inertia coefficients are non-negative, we may 

subdivide the equations (7.3.43) by these coefficients respectively, thus 

decoupling the system inertially but noise polluting the other terms. Let 

us do this, and then aggregate all the potential forces (gravity and spring) 

into the potential characteristic functions: 

) 
Allowing just one rotation (three equilibria), we let sin ql 

2 cos ql = l-ql/2. The characteristics (7.3.45) become 

1 2+ b 3 m 2+2 aql - Zgml r 1 ql ql - g 2q 2q l gm2q 2 

2 2 
m1r 1 + m2q 2 

which generates for (7.3.45) the three equilibria 

e 
q 

o,±I6, 

1 
-- [± 16 (a + 6b) - 3 gm 1 r 1 ] . 
4m 2 g 1 

) 

(7.3.45) 

(7.3.46) 

(7.3.47) 

Then the aggregate of all the nonpotential internal forces (centrifugal, 

damping) in terms of characteristic functions is: 
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q>1 r 1 (g,g) 

q>2 r 2 (g,g) 

Finally, denoting 

2 •. 
+ \ lei1 lei1 

+ °1 (q,q,\) 
m2q 2q 1q 2 

2 2 m1r 1 + m2q 2 

+ °2(g,g,A2) ·2 1 
A2Cr2 - q2q 1 + m2 

!:J. R R T 
w(t) (m2 ,Q1 (t) ,Q2 (t» and 

Q~(t) U 
1 

} 
we obtain for (7.3.43) the motion equations 

} 

q. + q>. (g,q,A. ,m2) + II. (g,m ) = R. (q2'w) + ;:; (q2,w,t) , 
~ ~ ~ ~ 2 ~ ~ 

i = 1,2 

The reference model is now taken as the following: 

•• ,. 1 2 3 2 
~1 + AmI ~1 + a'\nl - 2' gr 1 '\n1 + b'\n1 - g~2 '\n1 + 2g~ 

q + A 0 + 2gq - (gq 3 /3) = 0 , 
1112 m2 '1n2 ln1 "1111 

o } 

(7.3.48) 

(7.3.49) 

(7.3.50) 

(7.3.51) 

which has the same equilibria (7.3.47) for ex. -+ 0, i = 1, ••. ,4, provided 
~ 

and we approximate m2 = 1 . The total energy of the model is 

with the time derivative 

E (q ,fj ) = -(A 0 2 + A 0 2 ) ::; 0 , 
m 111 In m1 ln1 m2 ln2 

securing the dissipativeness of the model, when 

obtain 

rcu:. +R. -0. +II . (q,); ) -II.Jei. 
~ ~ ~ ~ m~ m ~ ~ 

where 

II (<i,);) 
m1 m 

II (q,);) 
m2 m 

(7.3.52) 

(7.3.53) 

A ,A > 0 • 
m1 m2 

We also 

(7.3.54) 

We want the manipulator to follow the model 1N'ith the error less than ]l> 0 

and not later than Two following conditions imply condition (I) 

of our case: 
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min max 
U W 

min max 
U W 

for OE ~ 0, and 

max min 
U W 

max min 
u W 

(7.3.55) 

(7.3.56) 

for OE < o. Substituting (7.3.44), conditions (7.3.55) are implied by 

j
( ,.; [(m 1 r i + m - q ~ ) I 1 4: 1 1 ] . [ (II ~ - ITm 1 ) 4: 1 - Am ~ 1 ] 

u~sgn4:1 +Al4:~-(Q;4:/14:11), V 14:11 ~ 61 , 

= suitable constant, V 14:11 < 61 ; 

(7.3.57) 

* . {";-(Am2~2m-/I4:21)+(A~q2+Q~)(q2/14:21)' 
u 2 sgn q2 V 1 q 2 1 ~ 62 ' 

= suitable constant V 14:21 < 62 

(7.3.58) 

where IT~ = maxm IT1 (q,m2) , Q:,~: denote the extremizing values of Q~'Ui' 
2 

respectively and where the distances 61,6 2 to the zero-velocity surface 

are calculated as always before. 

The relations (7.3.57), (7.3.58) give the set valued control program 

P (.) defined for OE ~ o. An identical argument leads to relations imply

ing (7.5.56) and thus giving the control program for the set defined by 

OE < 0 with the control functions u~ estimated by inverted inequalities 
~ -

(7.3.57), (7.3.58) with inverted estimates for m2 ,QR. The adaptive laws 

become in our example 

a. 
~ 

+ I·· 1 -a.[(v It ) + E (q,~) ] 
~ f.I f.I m 

i 1,2 , 

with Em (q,q) 

by 

defined by (7.3.54) and v + found from ai'lo 
f.I 

. . 
Em (q,q) + Em (~,~) + Al sgn a 1 + 1..2 sgn a 2 = d 

(7.3.59) 

ai'lL specified 

for a suitable constant d > 0, which yields v~ 

simulation was done for the following data: 

v 
s 

d. The numerical 

349 



www.manaraa.com

g = 9.81 m/sec 2 , m1 = 10.00 kg , m2 E [0.5,10J , 

Al = 6.0 kgm2 , A2 = 3.0 kg/sec r 1 0.66 m , 

a = 500.0 kg m2/sec 2 , b = 3.0 kg m2/sec 2 , 

A = 5.0 kg m2 , 
ml 

A = 2.0 kg/sec, 
m2 

d = 500 . 

The integration method used was Runge-Kutta with step-size 0.02 sec. 

Figure 7.9 shows the trajectories. 

30 

20 

10 

o ~=:=:;;;~~""'_=:+-----+---~~I-I t (sec) 

-10 

Fig. 7.9 

7.4 ~10DEL TRACKING BY HA~lIL TONIAN SYSTEMS 

The product-state-space method discussed in Section 7.2 has the dis

advantage of doubling the dimension of the considered set of motion equations. 

This is an unwelcome feature with regard to computation time. As we may 

see in Skowronski [50J, the problem can be solved approximately by using 

less-dimensional observes to produce the feedback information needed for 

controllers. On the other hand, using the error equation, we remain within 

the dimensionality of the original system, and there have been at least a 

few successful attempts to handle systems with untruncated nonlinearity, and 

not necessarily decoupled, via the error equation method, see Johnson [lJ, 

Krutova-Rutkovski [3J-[5J, Lal-Mehrorta [lJ. It also appeared recently, see 

Flashner-Skowronski [lJ, that the error equation can be constructed for a 

very large class of mechanical systems covered by the Hamiltonian format. 

We describe the case briefly below. 

Recall Section 1.7 with the motion equations (1.7.10), and recall its 
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contingent augmentation (2.2.3)' Introducing the parameters ~ we obtain 

(lH(q,p,w,~) 
(lPi 

(lH(q,p,w,~) + QDlo (q,p,w, -) +QFlo (q,p,u,w) +QRlo (q,p,w,t) 
(lqi 

i = 1, ... ,n , 

J (7.4.11 

which serve now as the selector equations of the corresponding contingent 

subcase of (2.2.6) '. Note here, that since the control program is 

~-adjustable, u E P (x, t,~) , x = (q,p) T, then Q~ (.) is indirectly 
l 

~-adjustable. The reference model (7.1.15) specified in terms of the 

Hamiltonian format becomes 

(lH (~,p ,~ ) 

~i 
m m m 

1 
(lPmi 

(lH (~,p ,~ ) 
D - - -m m m 

Pmi (l~i 
+ Q ° (~,p ,A. ) 

ml m m 

assuming the reference input signal urn - 0, and with ~(t) E 

being the model displacements and momentum vectors. p (t) E. 6.. 
m q 

6. 
q 

(7.4.2) 

We uphold 

all the model assumptions made in Section 7.3. Then we define the mis-

alignments in displacements and momenta as - l!, - -e (t) = q(t) -q (t), and 
- l!, - -e (t) = pet) -p (t) 
p m 

respectively, let 
ql!, _ _ -m 

a (t) = A. (t) - A.m , as before, and 

form the sum of the Hamiltonians concerned 

H (e ,e ,0 ,p ,w,a,J ~ H(q,p,w,~) +H (0 ,p ,~ ) 
eqp"'Illm m"'Illmm 

Observe that H (.) is a function of e,e through _ e _ _ q p 
parameters A.,O,p ,W,A.. Of those, A. is given by 

m "'Ill m m 

(7.4.3) 

q,p,~,Pm with 

design, ~(t) ,Pm(t) 

are known from (7.4.2) which is off-line calculable, if not directly 

designed. In particular, ~(t)'Pm(t) may be given as the desired yet) 

filtered through the reference signal urn (t) as discussed before. Then w 
is unknown but bounded in its known range W and ~(t) is adjustable, thus 

for our present purposes, optional to the designer and varying in the fixed 

range Ii.. The function He (.) is obviously obtained by substituting 

q = eq+Q p = e +p , ~ a+~ into H(q,p,w,~) of (7.4.3). 
"'Ill P m m 

Assuming, for all our practical purposes, that the Hamiltonians equal the 

corresponding energies, we follow our previous custom and let 

. ) (7.4.4) 

H-(e ,e ,0 ,p ,~ ) 6. inf_ , H (e ,e ,q ,p ,a,w) 
e q p "'Ill m m w,/\ e q p -m m 

Subtracting (7.4.2) from (7.4.1) we have 

351 



www.manaraa.com

dH(q,1',A,W) 
dPi 

dH (q ,1' ,x ) 
m"'Inmm 

dPmi 

Considering now that qi 

Pmi = Pi - epi ' we have 

Then 

dH 
e 

~ 
~ 

Similarly 

dH 
e 

dep . 
~ 

whence 

" (- - _ ') dH (q ,1' ,>;: ) oH q,p,W,1\ + m"'In m m 
deq . deq . 

~ ~ 

dH dqi dHm d~i 
-----+ ----dq. deq dq. deq 

~ i "'In~ i 

dH 
- ~ + Q~ + Q~ + Q~ oeq . ~ ~ ~ 

~ 

"H(- - - ') dH (0 ,p ,>;: ) o q,p,W,1\ + m "1lI m m 
dep . de p . 

~ ~ 

"H dp. dH dp. 
o ~ m m~ -----+ ----dp. dep dp. dep 
~ i ml. i 

dH 
e 

dep . 
~ 

Thus the error equations are 

dH 
e 

dep . 
~ 

dH 
e ---+ 

deq . 
~ 

ep + p . , and q; q. - eq , 
i m~ "'In~ ~ i 

I (7.4.5) 

I (7.4.6) 

(7.4.7) 

i 1, ... ,n 

representing again a canonical form with the Hamiltonian He' displacements 

eqi and momenta epi ' i = l, ... ,n. Moreover, if the damping in both, 

the controlled system and the reference model, is representable in terms of 

the Rayleigh function: 
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D A 3R (q ,p ,A ) 
Q g mlllmm 

mi 3p . 
m~ 

then, introducing R ~ R + R and 
e m 

Q~i (eq,~,a'~'Pm'W) ~ Q~(q,p,X,W) -Q~i (~'Pm,Xm) , 

we have by similar derivation as for H 
e 

D 
3R (e ,e ,a,~,p ,w)/3ep Qei = 

e q p m i 

wherefrom the error equations become 

3H 

I 
eqi 

e 
3ep . 

~ 

3H 
epi 

e D Q~ Q~ Eleq . + Q . + + 
e~ ~ ~ 

~ 

(7.4.8) 

(7.4.9) 

where all the functions have arguments eq,ep and parameters w,a,~ and 

Pm. In further discussion, we shall use either (7.4.7) or (7.4.9). Quite 

obviously both these canonical forms are selector equations of a subcase of 

(2.2.6) I, with x ~ (eq,ep)T. Capture of the error-motions ;p(e~,e;,to'·) 
of such a system in a target defined by 

(7.4.10) 

secures our tracking objective, with an extra requirement that 

a(t) = A(t) - A 
m 

satisfies I a(t) I < ]J for of such capture, 

if such a requirement is feasible. To achieve this task, the controller 

and adaptive laws will be designed. We shall use 
. 2n+l 

on a set 1':,0 x A ~n the space ~ of vectors 

(7.4.9) as well as some adaptive law of the type 

-

Conditions 

(e ,e ,0.) T 
q P 

(7.1.12) . 

5.5.2, applied 

and refer to 

Observe that we can adjust the origins q o p=O and ~=O, 

o so that H- (0,0) = O. Moreover, with the same number of extrema 
e 

of H-(·) and. H (.) , there will be a H--cup surrounding H-(O,O) with the 
m e e 

threshold H- (e ,e ) ~ hE. The latter constant is determined by the 
e q p e 

H--level passing through a Dirichlet unstable equilibrium (saddle), which 
e 

is the closest to the origin local maximum of He. 

where 

We let the test function for Conditions 5.5.2 be 

V(e ,e ,a) ~ H-(e ,e ,0 ,p ,X ) + a·a , 
qp eqplllmm 

-a I':, = (sgn a! , ... ,sgn all as in Section 7.3. 

(7.4.11) 

Then let us define 
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d(lI o x Aj : V(e ,e ,a) 
CT p 

dT., : V(e ,e ,a) 
'<, q p 

v TC = ].l 

Fig. 7.10 

(7.4.12) 

(7.4.13) 

with A : 0 5 a. 5 a+ 
l 

i = 1, ... , l, a + E lR, see Fig. 7.10. We use 

(S.S.2) implied by c- defined from (S.S.6), for some T( required. 

Since '\n (t) ,Pm (t) ,Xm and the extremizing X* ,w* in H; (.) are known 

values, the formal differentiation of (7.4.11) gives 

where 

V(e ,e ,a) 
q p 

[ 
- dH - dH dH - J 

F(e,e) ~ l..~_ ~ __ m __ ~ __ m_+ e 0 
q p l-l dO . dp. dp. dU. ~ . Qmi 

llIl ml ml "'llll ml 

is the known perturbation due to the influence of known parameters 

Then, in order to satisfy (S.S.2) I of Corollary S.S.l or (S.S.8) of 

Corollary S.S.3, we need 

\,n [( FRO D). " F --min_ maxw- Ll'=l Q. +Q. +Q. -Q . e q J + + aa u l l l ml i 

) (7.4.14) 

This is obviously implied by the following two conditions. 
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(I) Control Condition 

-F -R -D -D min_ max_ (Q + Q + Q ) Qm ' .V e t 0 , 
u w q 

and 

(II) Adaptation Condition 

+ 
[heE + a -11 

I F I J I Ci I 
-- Ci t 0 aa $; - + , V 

T( 

The first is implied by the control program 

-F - - - -minu maxw Q (q,p,u,w) 

jgD(q ,p ,~ ) _max_[QD(q,p,~,w) +gR(q,p,w,t)], 
mlnmm w --

suitable constant, V I ~ I < S , 
q 

with S obtainable as usually before. 

V I~ 12 S, 
q 

(7.4.15) 

(7.4.16) 

(7.4.17) 

Note that the controller (7.4.17) applies irrespective of whether or 

not we represent the misalignment in damping as 
-D -D 
Q - Qm , or as the differ-

-D 
ence function Qe (·) derived from the Raynold's representation. 

Unless gF(.) is specified further, we cannot resolve (7.4.17) with 

respect to u any further than already done. Assuming, similarly as in the 
-F /), - - - _ 

previous cases, Q = B(q,p,w)u where B is a non-singular, positive 

definite, N Xr matrix, we can implement (7.4.17) using 

{

_B- 1 (q,p,w*) [gD (q,p,~,w*) - Q~ (~'Pm'~m) 

u(t) = + i;t(q,p,w*,t)], V I~ I 2 S , 
q 

suitable constant, V I~ I < S , 
q 

(7.4.18) 

where w* denotes the extremizing value of w (. ) 

In turn, the adaptation condition (7.4.16) is implied by the following 

adaptive laws: 
+ 

_h_e_E __ +=-a ___ -_I1_J ' 
TC 

a~ to, 
~ 

i 1, ... ,l . (7.4.19) 

To justify the above, we use the same argument as in Section 7.3, when 

proving that (7.3.42) implies (7.3.36). Note that the type of equations 

and behavior of solutions of (7.4.19) is identical with those of (7.3.42). 
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EXAMPLE 7.4.1. Consider the scalar mechanical system 

u , (7.4.20) 

with A,W E [1,2J and let the reference model be 

~ + S~ + 2 (~ - 2~ +~) = 0 . (7.4.21) 

In Hamiltonian format, these equations become 

_A(q_ 2q 3+ q 5) + (wp/m) + u, ) (7.4.22) 
p/m , 

with the Hamiltonian 

(7.4.23) 

and 

-2 (~ - 2~ +~) + SPm ' (7.4.24) 

with the Hamiltonian 

(7.4.25) 

Then considering that the potential energy in (7.4.23) is positive 

definite, we have the extremizing A* = 2 and 

H-(e ,e ,0 ,p ) 
e q p "'m m 

(e + P ) 2 
P m 2 ( 4 

2m + (eq +~) - e q + Pm) 

+ + (eq +~) 6 + Hm (~'Pm) 
) (7.4.26) 

Note that with A = A *, H (. ) and Hm (.) have the same extrema, that is, 

(7.4.20) and (7.4.21) have the same equilibria. Moreover, changes in A(t) 

do not produce incompatibility between our two systems regarding the 

equilibria. The control program (7.4.17) becomes 

(maxw wp/m) 

To calculate the adaptive law (7.4.19) we need F obtained from (7.4.25), 

(7.4.26): 

F = 2ep (1+2e 2 +e 4 ) +20 p (1+6e 2 +Se 4 ) +4e p 02(3+20e 2 ) 
q-m q q "'mm q q q-mlll q 

+40 3p (1+Se 2 )-2(e +p )(q _20 3 +0 5 )/m+Sp [e +(l+m)p Jim. 
lllm q p m m 'n\ III m p m 

Substi tuting m = 1.5 kg, we obtain trajectories shown in Fig. 7.11. D 
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Fig. 7.11 

7.5 ADAPTIVE COORDINATION CONTROL 

Aircraft or spacecraft formation keeping, spacecraft rendezvous, 

several robotic arms operating from the same conveyor and on the same 

workspace, air traffic control over an airport, are but a few examples 

where coordination control is essential. It may be considered separately, 

as in our Chapter 8, or as an addition to tracking with avoidance. In 

turn, the latter may be investigated in relative coordinates, utilizing 

our conditions for caDture-first described in Section 6.4, or as an 

augmented version of mutual tracking with secured mutual avoidance of the 

control systems concerned. For mechanical structures, such avoidance would 

usually mean first an avoidance in Cartesian space, later transformed to 

Configuration Space coordinates and finally discussed in State Space after 

velocity objectives have been stipulated. 

In mutual tracking we may have two approaches: either the objective 

lies in mutual tracking only, that is, it does not matter where the con

verging systems go, as long as they converge, or we aim at mutual tracking 

to a stipulated target set in the state space. Obviously the second case 

is more practical. The target may be fixed or moving. If moving, then 

the motion may be given by a time parametrized curve or more generally by 

a dynamical model. In the latter case, the problem may be made adaptive 
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and becomes a double MRAC with reference to a single model. The extension 

is called Mutual Reference Adaptive Control (MURAC) and was investigated 

in Skowronski [39J,[41J,[43J,[44J. We shall follow the latter work here. 

We require a target reference model, which is relatively simple, but 

compatible with both equations of the controlled systems. The axioms 

required are the same as those imposed upon the reference model in Section 

7.3 and the design may include choosing an extra reference signal -

control urn to make the model trajectories coinciding with a given curve 

or curves in 6" see Section 7 .1. 

Let us investigate in particular two mechanical structures in the form 

of interdependent chains, see Section 1.4, with the state equations (2.1.17) 

augmented by introduction of the uncertainty w and the adaptive parameters 

A to the contingent format 

~j E {tj(x,uj,);j,wj,t)iuj E pj(X,Aj,t),W j E wj }, j = 1,2 (7.5.1) 

-j d with the vectors w ,A defined identically as 'w,); in Sections 2.2 and 

7.1, respectively. The total system vector x(t) represents the state of 

all chains, while xj(t) are chain state vectors, as in (2.1.17), and each 

chain is actuated by a separate control program 

uj(t) E pj(X,Aj,t) , (7.5.2) 

with the option of feedback to all state vectors xj j = 1,2 . In the 

general format, the adaptive laws (7.1.12) to be designed are now 

~j = fj (x Aj t) a ' , , j = 1,2 (7.5.3) 

and the reference model (7.1.15) remains the same with, as mentioned, the 

same assumptions. 

In each chain j we have Mj bodies as specified in Section 1. 6, with 

Cartesian body coordinate frame ojx j yj zj v 1 Mj Whl'ch wl'll l'n V'V'v' = , ••• , 

general have 6 DOF with respect to the base (3 translations and 3 rotations) 

provided the chain is not constrained. This gives a total number of DOF in 

the system n = 6 L, Mj . 
J 

With each of the controlled systems j = 1,2 

referred to the model separately, augmenting our discussion to 

j = l, ... ,m < 00, see Section 2.1, would not change any arguments or 

results. However j = 1,2 is more instructive. 

The block scheme of the system is seen in Fig. 7.12. In the same way 

as for MRAC, we define the product vectors Xj(t) ~ (xj(t),x (t))T E 6,2 , 
m m 

aj(t) ~ );j(t) - ); J' = 1,2 as well as the vectors Fj = (t j f fj)T m' , mt a 
j 1,2 leading to the two product systems, cf. (7.3.16), 
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(7.5.4) 

j = 1,2 , 

with the Filippov type solutions 
-j -jO _jO 
<jl(Xm,o: ,to,t), t~to' within the 

class K(x jo a,jo) )' = 1,2. m ' , Then introduce the sets 

Mj ~ {(X j a,j) E 1';2 xltix j =x a,j =o} 
m' m ' , 

j 1,2 , 

and again let 1';0 c I'; be the desired set for the mutual tracking to occur. 

We shall now have two objectives specified by the following two definitions. 

Fig. 7.12 

DEFINITION 7.5.1. The systems (7.5.1) mutuaZZy track the reference model 

(7.1.15) on 1';0 if and only if there is a pair of controllers pj (.) and a 

pair of adaptive law functions such that the set 

I';~ X It is strongly positively invariant under the product motions of both 

classes K(X~O ,&jo) j = 1,2, and there are t~o t~me intervals, T~~co, 
K -jo -jo - -)0 -)0 -)0 -)0 such that for each (X ,0: ), j = 1,2, <jl (X ,0: ,to'·) E K (X ,0: ) 

" m , m m 
;J; -Jo -Jo J (1 2) implies 't' (Xm ,0: ,to' t) E Mf.! V. t ~ to + Tf.! where Tf.! = max Tf.!' Tf.! 

When T is given a-priori we refer to tracking in stipulated time. 
f.! 

Let us now re-label the Cartesian coordinates in the general uncon

strained case and aggregate them in the vectors !j = (A?, .•. ,A~n)T 
T = (X1'Y1'Zl' ... 'Xn'Yn'Zn) and suppose that the transformation from 

Lagrangian to Cartesian coordinates (forward kinematics) is done off-line 

and given by 

i 1, ... ,3n . (7.5.5) 
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Then let us denote - I::; -I -2 T Z (t) = (x (t),X (t» , t ~ to' generated along product 

trajectories Z (t) = ~ (ZO ,to ,t) t ~ to' ZO = Z (to) , and define 

MA ~ {zEI::;~1 IAl-A~1 :<>d, i,j = 1, ..• ,3n} 

the set of possible collision between the bodies to be avoided. Further, 

we design an avoidance set A 2 :> MA with smooth boundary (best assumed as 

a Liapunov function level) and define CA2 = I::;~ - A2. Then also let 

I::;~ :> A2, such that 1::;1 = I::;~ - A2 is the required slow-down zone in cA2 

about A2, cf. Section 6.1. 

DEFINITION 7.5.2. The mutually tracking systems of Definition 7.5.1 avoid 

collision with precision d > 0 if there is 1::;1 in I::;~ such that for any 

ZO E 1::;1 and any product motion ¢(.) E K(zo) , 

¢(zo ,to,t) E CA2, Vt ~ to 

be defined as in Section 7.3, then also let 

v j 
s 
j-

v]J 

'+ v J 
]J 

V (X j ;xj) I 6{j (ij) 
s ro' ro' E 

while 

v j (.) 
].1 

Cl (I::; 2 x Al 0 

in f V j (X j a j) I (}{ j a j ) E ClMj 
]J m' m' ]J 

n cM j 
]J 

sup v j (X j aj ) I (i{j (ij) 
]J m' m' E Cl (1::;2 xA) 0 

n cHj 
]J 

and introduce four 

1,2 , with 

) (7.5.6) 

Comments referring to the choice of Vs (·) of Section 7.3 apply here to 

v j (.) . 
s 

We may now adjust the sufficient conditions for tracking introduced 

in Section 7.3, to our double MRAC-case. By the same argument as for 

Conditions 7.3.1, we have 

CONDITIONS 7.5.1. Two systems (7.5.1) mutually track the reference model 

(7.1.15) according to Definition 7.5.1 if, given 1::;0,A,]J > 0 there are 

control programs pj(.) and CI functions Vj (.) Vj (.) such that for all 
s ']J 

(X j ,(ij) E 1::;2 X A we have 
m 0 

(i) v j (i{j (ij) :<> v j 
s m' s 

V (}{j a,j) 
m' E N 

s j 1,2 

(ii) for each u) E pj (}C j (ij) 
m' , 

, 'T ' , ' , , 
Vv (X J (iJ) .FJ(x J XJ uJ wJ t) 

s m' m"" 
< 0 , V -j 

W E wj (7.5.7) 

v j (X j (ij) '+ (X j a,j) a:P (iii) 0 :<> < v J , V E j 1,2 
]J m' ]J m' )l 

(iv) vj(icj(ij) :<> j- V 6c j (ij) E Dj n Mj j 1,2 v , ]J m' )l m' ]J 
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(v) for each 

continuously increasing such that 

VVj(X j (ij)T.Fj(X j ijj Xj wj t) ~ -c. , V wj E wj 
].J m' m' , " J 

(7.5.8) 

REMARK 7.5.1. The tracking after stipulated time holds, if given 

the estimate c- of the rate of change of is 

(7.5.9) 

Conditions 7.5.1 are proved by the same argument as Conditions 7.3.1, 

which is such that (i) and (ii) imply the strong positive invariance of 

~~ x A and are not used for anything else. Hence we can make the following 

REMARK 7.5.2. When ~~ x A is strongly positively invariant, conditions 

(i), (ii) are redundant for the hypothesis of Conditions 7.5.1. 

We may now pass over to conditions sufficient for Definition 7.5.2. 

CONDITIONS 7.5.2. The tracking systems (7.5.1) avoid collision according 

to Definition 7.5.2, if Conditions 7.5.1 hold and if there is a safety zone 

~A with at least piecewise C I function V A (.) : ~A -+ lR such that for the 

tracking pair pj (.), j = 1,2, for all Z E ~A' we have 

(vii) for each ii j E pj (Z) , 

"', (Z)T(-fl(-I -I ,I -I ) -2(-2 -2 ,2 -2 , vVA ,x,u,/\,w,t,f x,u,/\,w ,t»;,: 0, (7.5.10) 

for all wj E wj , j = 1,2 • 

The proof follows immediately from the fact that if some arbitrary 

:h - 0 - 0 2 "'A2 product motion 'i' (Z ,to ,t), t;,: to' Z E ~A' crosses a at some 

tl > to' then by (vi) , vA (Z (t l » < vA (Zo) which contradicts (vii). 

The functions v j 
s 

and v j 
].J 

may be then defined by (7.3.28), 0.3.29): 

v j ~ E (x j ) + E (x ) + aj(ij (ij t- 0 ; 
s m m m 

(7.5.11) 

l iE (xj)-E (x )I+aja,j, 
m m m 

aj(ij V (X j (ij) E Mj , m' ].J , 

(7.5.12) 

with (ij t- 0, j = 1,2, and a j = ( j Nj)T. sgn ct l , ... ,sgn u, 
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The function VA(·) is defined by 

vA=-}rE (x1)_E (x2 )J2. 
m m (7.5.13) 

Let us repeat the control conditions (I) and the adaptation condition (II) 

of Section 7. 3. 

(I) Control conditions 

min max f: (x j ) 
uj wj m 

max min E (x j ) 
ii j wj m 

where oE = E (x j ) 
m m 

~ 

;:: 

- E 

(II) Adaptation Condition 

and add 

E (x 
m m 

E (x 
m m 

(x ) 
m m 

(III) Coordination condition 

) , for oE ;:: 0 , 
m 

) , for oE < 0 
m 

By the same argument as in Section 7.3, the conditions (I) and (II) imply 

(i)-(v) of Conditions 7.5.1. To check upon (vi) of Conditions 7.5.2, note 

that from elementary mechanics, V(qj) = V(i j ) and since both potential 

energies are Taylor series developable, positive definite and increasing on 

CD.L , then increasing some of the distances I A ~ - A~ I, i, j = 1, .•• , 3n , 
1. J 

one increases VA(Z). We may thus define ClA 2 :VA(Z)=vA,vA=sup(z)lz€MA, 

yielding (vi). 

To check upon (vii) we differentiate (7.5.13) requiring 

and then we have to use conditions (I) and (III) combined. Let us investi-

gate the relevant cases. 
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CASE E (X j ) ~ E (x ), j = 1,2 
m m m 

We have two subcases:-

(a) Here we use (I): 

calculate the control til, and then substituting it, we use (III) to find 

ti2 such that E (x2 ) :<:; E (xl). Since in turn E (xl) :<:; E (x ) , then 
m m m m m 

E (x2 ) :<:; E (x ) , and ti 2 also satisfies (I). 
m m m 

(b) E (x2 ) ~ E (xl) ~ E (x ). The roles of E (x j ) are reversed. 
m m m m m 

Using (I) we find ti2 and then using (III) we find til such that 

E (xl) :<:; E (x2 ) :<:; E (x ) , thus also satisfying (I). 
m m m m 

CASE E (x j ) < E (x ), j 
m m m 

1,2 : 

Again, there are two subcases:-

(c) E (x2 ) :<:; E (xl) < E (x ) We use (I) : E (Xl) > E (x ) to find m m m m m m m 
-1 and substituting it, we (III) to find ti 2 such that E (x 2 ) ~ E (xl) u use 

m m 
> E (x ) thus also satisfying (I) . 

m m 

(d) E (x2 ) :<:; E (xl) < E (x ). We use (I) to find il2 and (III) to 
m . m m m 

find ill such that E (xl) ~ E (x2 ) > E (x) thus also satisfying (I), 
m m m m 

which closes our argument. 

Substituting the j-chain correspondents of (7.3.37), (7.3.38) into the 

above analysis, the combined conditions, control (I) and coordination (III), 

obtain the following shape. For clarity of exposition, we substitute the 

extremizing values of w and drop the arguments of the functions involved. 

:<:; max (pj)Tqj + (Rj)Tqj 

iij 

for all (Xj,k (ij ,k) E CMj,k such that oE ~ 0, E (x j ) ~ E (xk) 
m ' ~ , m m m 

where j,k=1,2 j'lk, and 

max (pj)Tqj ~ FT~_ (Rj)Tqj+[(i3j)Tcij_DT~J+ (fij-fi )T~j , (7.S.16)a 
ii j m m m 
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(7.5.16)b 

for all (ij,k , aj ,k) € cMj,k, such that oE < 0 
m m ' 

where j,k = 1,2, j t k • 

.. .*. ....*. 
If we now specify as before: F~(qJ,~,wJ ,uJ ) = B~(qJ,qJ,wJ )u~ , 

~ - ~ ~ 

B~ > 0, i = l, ... ,n, the above conditions are implied by the following 
~ 

control programs. 

u~ sgn q~ 
~ ~ 

For tracking, 

1 [ .• j.j+j.j 
. . F .q . - D .q . - R.q. D.q. I . J I BJ m~ lll~ = "1Il~ ~ ~ ~ ~ 

qi i I :s; 

= suitable constant, ¥lq~l<s~, i=l, ... ,n 
~ ~ 

and for coordination 

k .k 
u. sgn q. 
~ . ~ 

suitable constant, 1, ... ,n 

(7.5.17) 

(i.5.18) 

wi th the control u j obtained from (7.5.16), and 
i 

Q~,k , BJ.· ,k 1 . 
I-'~ ~ P ay~ng 

identical roles as in (7.3.41). 

The physical sense of the conditions (I) is that the power balance of 

the chains should track the power of the model, and (III) secures the fact 

that powers of the two chains diverge while their energy levels are differ

ent, thus counteracting possible collision. 

The adaptation condition (II) is then implied by the adaptive law, 

cf. (7.5.13): 
. 0 

a~ t 0 
~ 

i 1, ... , z., j 1,2 (7.5.19) 

by the same argument as for (7.3.42). 

EXAMPLE 7.5.1. We double the single arm system of Example 7.3.1 and form 

the structure shown in Fig. 7.13 with the double set of motion equations 

(7.3.43)-(7.3.49), the joint coordinates and velocities as well as forces 

with the superscript j = 1,2 added. The double reference model (7.3.51) 
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Fig. 7.13 

remains unchanged, together with the corresponding total energy function 

E (.). 
m 

The tracking controller (7.5.17) in our present example is identical 

with (7.3.57), (7.3.58) of Example 7.3.1: 

(

=> 

1 • 1 
U2 sgn q2 

= suitable constant, 

while the coordination controller (7.5.18) becomes 

suitable constant, V \q~\ < S~ ; 

m 
[ CBl*Ul*+Rl_Dl_nl +n Jq.l 

2 2 2 22m2 2 

+[D2_R2+n2_n J.2l V \q.2\ ~ 
2 22m2 Q2' 2 

suitable constant, V Iq~1 < S; . 

(7.5.20) 

(7.5.21) 

(7.5.23) 
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-1-75 

-1·85 

-1·95 

3'00 
-2-05 I-----t----+----t-----""'"""---t----+_

t sec 

-2·15 

-2·25 q.m2 

-2-35 

-H5 

Fig. 7.14 

1* ~ [1 1)2 + 1)2J In the above, Bl = 1/ -ml (r 1 + m (q2 ' B~* ~ l/m+. The argu-

ments are omitted upon assuming that the extremizing values of m2 ,Qi have 

been substituted - confusion is unlikely, but the reader may want to compare 

(7.3.57) , <7.3.58). The role of !3~ is the same as that in (7.3.57) , 
], 

(7.3.58) . Note that the program (7.5.22) for the control u 2 
1 uses u 1 

1 from 

(7.5.20), and (7.5.23) uses (7.5.21). 

The adaptive laws (7.5.19) become now 

. .\ 
(IT _rrJ)qJIJ 
mill 

(7.5.24) 

All the laws are integrable with exponential non-zero solutions. Here 

c-: = vj+/t j J' = 1,2 as in (7.3.56) when t j are stip'ulated, otherwise 
J ~ ~ ~ , 

they can be any sui table posi ti ve constants. Assuming the arms symmetric 

in masses and length and taking the following data, the convergence between 

the arms and the model is achieved after 2 sec - the curves are shown in 
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Fig. 7.14 and Fig. 7.15. The data are r = 0.66 , a = 500 , b = 3 , 

1 lkg, m2 = lkg, m1 [0.5,10 kg] m2 [0.5, 10 kgJ c 1 = 100 m1 E E 
1 2 2 

c 2 200 , the time step 0.02 sec. 

Closing this section. let us note briefly that Definition 7.5.2 of 

mutual avoidance of systems and Conditions 7.5.2 for such avoidance may 

stand independently of tracking. Only slight reformalization, which is 

left to the reader, suffices for that purpose. Details may be found in 

Skowronski [44J. In this text, for space reasons, we must leave them out. 
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8.1 THE DYNAMICS OF CONFLICT 

Chapter 8 

DYNAMIC GAMES 

The description of a game by differential equations was called by 

Isaacs [lJ the differential game, and Blaquiere-Gerard-Leitmann [lJ called 

the dynamical system subject to conflicting control a dynamic game. Both 

names refer to, roughly speaking, the same set of problems, but the second 

better illustrates the nature of our investigation, which is devoted 

primarily to the state space pattern of behavior of dynamical, in particular 

mechanical, systems under conflict. Introducing into the system (2.2.6)' 

a second, competitive controlling agent with a different objective intended 

on the same part of !:" we produce the basic dynamical carrier for the 

conflict that may arise. The applications seem to be everywhere within the 

realm of mechanical systems, beginning from the classical, such as air 

combat (see Ardema-Heymann[l]l, air traffic, ship collision avoidance (see 

Merz [lJ), up to more recent applications like coordination control of 

robotic arms on the manufacturing floor or in space (see Ardema-Skowronski 

[l]), control of multi-legged vehicles (see McGhee [lJ, McGhee-Klein-Chas 

[lJ, etc.) In either of these problems, as much as in many other real life 

applications, the objectives attempted by the agents in conflict are 

complex, qualitative and quantitative, subdivided into several phases of 

achievement in time. For instance, in the aircraft duel with air-to-air 

missiles, the composite objective for each of the agents consists of three 

distinctive phases, each with a specific subobjective. First, it is to get 

into a winning position for the launching of the missile, second, to get 

the missile lockup onto the enemy in the shortest time, third, to escape 

from the enemy's missile range. The end conditions of each phase must 
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overlap with the next. Much in the same way, the robot manipulator working 

on a bench must compose its successive operation subobjectives: pick up a 

screw from the conveyor, turn it to the proper position, place it into a 

specific hole, etc. The opposing agent (the enemy pilot or the other robot 

which may collide) will have a different goal for each of the phases or even 

quite different phases. Still, both players attempting to realize their 

objectives may be doing so against uncertainty, which is always present. 

There is a large number of works, monographs, textbooks and even 

journals on differential games - far too vast to quote them here. In the 

direction of the present study, the reader may do well with the fundamental 

book by Isaacs [iJ, qualitative and quantitative games described by 

Blaquiere-Gerard-Leitmann [lJ, the geometric approach by Krassovskii

Subbotin [lJ, Hajek [lJ, Basar-Olsder [lJ, and non-antagonistic games by 

Petrosian-Danilov [lJ. A good source of up-to-date information is also 

given in Leondes (ed.), [lJ. 

The large majority of past works refers to simple, single quantitative 

objective (optimal collision), takes a one sided view of a fixed player 

(pursuit-evasion, no role reversing) and uses necessary conditions as the 

operating technique. We already argued the need for recognizing the com

plexity of objectives met in case studies, see Section 3.1. In terms of 

the true scenario of conflict, the one sided view mentioned is also a 

definite shortcoming, see Merz [4J, Olsder-Breakwell [lJ. As mentioned, 

there is a number of works on the one sided pursuit-evasion: homicidal 

cQauffeur game, Isaacs [lJ, Merz [3J; the game of two cars, Merz [2J, Getz

Pachter [lJ; and its applications to air combat, Prasad-Rajan-Rao [lJ, 

Jarmark-Merz-Breakwell [lJ, Peng-Vincent [lJ, Hagedorn-Breakwell flJ,[2J, 

and even on two-target games, but not two objectives: Pachter-Getz [lJ, 

Getz-Leitmann [lJ, Davidovitz-Shinar [lJ, Stonier [3J. It is only recently 

that the invertible roles of players are discussed, see Merz [4J and 

Olsder-Breakwell [lJ, and that the interface of such inverted roles is 

studied, see Skowronski-Stonier [lJ,[2J. 

Moreover, the first cited papers ~pproach the games via the traditional 

Isaacs' technique of optimization and necessary conditions. Optimization 

mayor may not be the basic feature in the complex objectives concerned. 

Quite often the fact of winning as such is more important, as we want to 

achieve a qualitative objective in favor of the player i = 1,2 , call it 

the objective property Q(i), see Section 3.1. The Isaacs' method of 

attaining the qualitative objective via optimization, for example, obtaining 

avoidance via maximizing to infinity the time of collision, was possible for 
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very simple objectives only. Furthermore, the analysis via necessary 

conditions is usually very complicated and it is even made more difficult 

by moving to realistic fan-shaped targets, firing zones. Moreover, it does 

not yield a quick determination of the winning strategies and winning 

regions. Since the necessary conditions produce only candidates for the 

latter, they may lead to a long time digital search for the corresponding 

trajectories without total security of success and on often small, PC-size 

on-board computers. Major innovative ideas have been used by the authors 

to overcome the problem. One of them is the reduction in dimensionality 

and/or finding analytic solutions to the motion equations; see our comments 

in Chapter 9 and also Davidovitz-Shinar [lJ and Skowronski [41J,[49J. 

The algorithms in the form of analytic solutions may often be obtained 

from sufficient conditions for controllability for both qualitative and 

quantitative objectives within the Liapunov Design, in the same way as was 

shown in our previous chapters for the control case. The Liapunov differ

ential game has been formalized in Skowronski [22J-[25J. Later it has been 

shown in Krassovski [lJ-[4J, Krassovski-Subbotin [lJ, Leitmann-Skowronski 

[lJ,[2J, Pachter-Getz [lJ, Getz-Leitmann [lJ, Leitmann [5J, Leitmann-Liu 

[lJ, Sticht-Vincent-Schultz [lJ, Skowronski-Vincent [lJ, Skowronski [29J, 

Galperin-Skowronski [2J,[3J, Skowronski-Stonier [lJ,[2J, Stonier [3J, that 

the Liapunov formalism serves the purpose very well providing both suffic

ient conditions for qualitative objectives and subsequent optimization. 

It appears that the Liapunov Design means as much for the qualitative 

objectives in the game as it did for control and stability. The Liapunov 

type test function becomes a qualitative perfoPl7/ance "index" of the game. 

Conversely, the optimal pay-off for a player may frequently be shown to be 

the Liapunov-type test function required qualitatively. Then the optimal 

behavior implies the corresponding qualitative performance, which covers 

Isaacs' games, but in a much broader sense of composite objectives with the 

reversible role of the players. The latter is attained by interfacing two 

semi-games, each for a player, and estimating within each such a semi-game, 

the strong controllability for the objective of the player concerned. Each 

of the players may change his role instantaneously. The typical example 

is again the one already mentioned several times of air combat where the 

same player may switch from evading to pursuing at any time of the game. 

To accommodate this, we need a state space display of the said interface 

of the two semi-games: regions of strong controllability separated by 

neutral sets, draw sets and a barrier. Such a display represents a map of 

the game revealing options for design of controllers and state constraints 

for winning of the attempted objective. 
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8.2 CONTROL LAB I L ITV I N THE GA~lE 

Let us examine now the basic logical structure of the two person 

competitive dynamic game which consists of what may be called moods of 

playand corresponding underlying dynamics. We can write (2.2.6)' in the 

game format by introducing the second agent 

~ € {f (x, U 1 ,u 2 ,w , t) lui Elji (x, u j ,t) ,w E W} i,j 1,2 , i =J j , 

(8.2.1) 
- -0 + wi th the same conditions for the existence of solutions ¢ (x ,to'·) : R ->- I:, 

o -1 -2 
specified wi thin the class K (x ,to) by the triple P (.) ,P (.), W, and 

forming the attainable sets ¢(x o ,to,t) as well as reachable sets 

¢(xO,to,[to,t» at t. Such solutions will be called game motions (or 

game trajectories in autonomous case). 

The reader must have noticed that we have made each program pi(.) 

dependent not only upon the state as required by feedback, but upon the 

opponent control. Formally, when there is no uncertainty in the system 

(w is assumed known) and the control u j (t) is known to the player i 

(u j given) the program pi (.) becomes single valued and the system 

(8.2.1) generates unique motions on 1:,. In the competitive game it may 

happen only in special circumstances, but it happens as a rule when the 

game becomes a coordination game for systems controlled by a single agency, 

for example, robotic arms. We shall briefly consider such a game in some 

examples, each time stating that it is the case. Generally, u j is not 

known to the player i and must be treated in pi (.) as bounded uncertainty 

thus adding up to the vector w. 

The weak mood of play answers the preliminary, but basic question 

whether the player i's objective Q(i) is attainable at all. Considering 

therefore all possible selections of control programs for both players, 

this question is actually one of controllability for each of the player's 

defined objective. We shall term it briefly the i-controllability, meaning 

controllability in favor of the player i, given the favorable control 

program of the opposition j, j =J i and favorable uncertainty W (.) • 

N 
DEFINITION 8.2.1. The system (8.2.1) is i-controllable on some 1:,0 c m 

for Q (i) , if and only if there is a triple pI (.) ,p2 (.) ,w (.) such that 

all game motions of K (xo ,to) generated on X O E 1:,0' to Em, by this 

triple exhibit Q (i) 

The state is called i-controllable for Q (il and the set I:,i 
q 
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being the maximal such I:!, 0 for which Definition 8.2.1 holds is called the 

region of i-controllability for Q (i). There obviously may be pairs 

(P l(.),p 2(.» generating independently Q (1) and Q (2) on the same set 

in I:!" so that in general I:!, 1 n 1:!,2 is nonempty. We shall call the set 
q q 

~ I:!, - (I:!,l U 1:!,2) if it is nonempty, the dead zone, a region of no controll
qq. 

I:!, 
n 

ability. If I:!,J. = I:!, 
q 

which we call a playing region (i = lor 2), the 

i-controllability is called complete. It indicates that there is a possi

bility of a player achieving his objective at each Xo E ~ depending, of 

course, if an appropriate strategy is undertaken by the other player, and 

subject to suitable w (.) If I:!,i is larger than I:!" then we are inter-
q 

ested only in I:!,i n int I:!, which is then called the usable part of I:!,i. 
q q 

Any subset of such a usable part of I:!,i is i-controllable for Q (i) 
q 

On the other hand the player i may have his own candidate set (say 

coming from necessary conditions) which he would like to cover with 
i i-controllable states. Then we may not search for I:!, , but only to secure 

i q. 
the i-controllability on a stipulated set I:!,o c I:!,o n I:!,J. t- <p. Such q 
i-controllability is xO ,to - uniform, if the quantities implementing Q (i) 

do not depend upon -0 x ,to' respectively. For complex objectives it may 

occur that some objective property Q(i) implies Q(i); for example, 

capture implies collision. Then the i-controllability for Q(i) implies 

that for Q (i) and we have 

~i c I:!,i (8.2.2) 
q q 

EXAMPLE 8.2.1. In order to illustrate the case of i-controllability, let 

us examine the turret game of Ardema-Heyman [lJ applied to the combat 

between player 1, a bomber, and playe~ 2, a fighter plane. Player 1 moves 

in a plane with arbitrary velocity relative to an inertial reference frame 

Oxoyo and can turn a ray weapon relative to a fixed direction at a bounded 

angular rate a, see Fig. 8.1. Player 2 moves such that he is always at 

a distance R from player 1, and he can traverse this circle at an angular 

speed relative to a fixed direction at a bounded rate S. Player 2 also 

has a ray weapon that he can turn relative to the line of sight between 

the two players at a bounded rate ~. The relative Cartesian reference 

frame Oxy is such that the origin is located at player l's position and 

the y-aXis lies along player l's weapon. 

Choosing the state variables in terms of the relative coordinates 
I:!, 8 I:!, '" 1 I:!, • 2 I:!, 8· Xl - ex, x 2 = 'Y, and the control variables u = ex, u l = , 

u 2 I:!, _~ , the kinematic state equations become 
2 

372 



www.manaraa.com

} (8.2.3) 

with x l ,X2 computed module 2rr and the playing space 

The control constraints are 0 $ u l $ ul , 

The firing range of the weaponry is R and the target sets for player 1 

are 

His 

Tl~{(Xl'X2)lxl$El}=T~ A2 

Al = T~ ~ {(xl ,x2 ) IX2 $ E: 2} T2 

y 

Yo ~=------+"""r--1~X 

O'------I~Xo 

Fig. 8.1 

objective Q(l) is collision-first, thc.t is, to drive 
T 

the sta':e 

x = (x l ,x2 ) by selection of control variable u l to hit the target set 

Tl whilst avoiding 1 TA , that is, the 

Section 6.4; that is, there is a time 

(6.4.2) , 

and 

x(t) ¢ T~ for t € [O,tc ] • 

strike 

t > 0 c 

zone T2 of player 2, see 

for which, cf. (6.4.1), 

Likewise, player 2 I s objective Q (2) is also collision-first, but this 

time it is to drive the state by selection of control variable (u2 u2 )T 
l' 2 

to hit target set T2 whilst avoiding T~, that is, the strike zone T2 of 

player 1, see Fig. 8.2. 
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Fig. 8.2 

Consider the strategy pair defined by the selection 

u;* = 0 and u~* = 0 (8.2.5) 

(player 2 executes the null strategy). The state evolves according to 

o . 

For XO € b., xl (t) will decrease from x~ to El whilst x 2 (t) remains 

constant at x~ > E2 This shows that for each x O € b., the resulting 

trajectory obtained for this strategy pair hits Tl before hi tting T~. 

Therefore b. l = b. • 
q 

Similarly, we obtain b. 2 
q b. with the selection of 

the strategy pair 

1* 
U o (8.2.6) 

This shows that i-controllability for i = 1 and 2 is complete. 

Note that in defining the player's qualitative objective property, we 

have specified that the state x(t) cannot lie in the opponent's firing 

zone at time t . 
c 

This means that even though b. l n b. 2 i ¢ there is no 
q q 

for which properties Q (1) and Q (2) hold together on the 

system trajectories of (1). D 

EXAMPLE 8.2.2. The turret game is particularly illustrative for the weak 

mood of play in another application, namely the coordination game for the 

two-arm pick-and-place robot, see Ardema-Skowronski rlJ. The rearranged 

scenario is shown in Fig. 8.3. The two arms are considered players. Arm 

1 has a rigid link of length r and a gripper both reduced to a point mass 

ml rotating about the base Bl fixed at (0,0) of the world coordinates 

(inertial) reference plane Oxy. Similarly arm 2 has a link of length r 

and a gripper m2 rotating about the base B2 , which itself is fixed to a 

conveyor turntable rotating about Bl with angular speed S (t). The radius 

of the table is r. The rotation angles of th~ arms are 6 i (t), t ~ 0, i = 1,2. 
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The gripper m2 is supposed to pick up an object at some point 

02 in the world coordinate plane outside the conveyor and deliver it to 

location BI by controlling the rotation of the turntable and the rotation 

of gripper m2 relative to it. Simultaneously and independently, gripper 

ml is supposed to pick up an object at some point 01 in the world plane 

and deliver it to the conveyor at location B2 . To prevent collision with 

the conveyor, both grippers must deposit their objects with zero relative 

velocity. The turntable actuator acts as coordination controller. 

Our goal is to seek control programs that guarantee successful task 

completion of each arm, despite the action of the other. Specifically we 

seek for each arm i 

avoiding the arm j, 

collision-first: reaching the target point B, while 
J 

i , j = 1,2, i f. j. Con trollabili ty for both 

objectives requires coordinated programs for both arms. 

y 

Fig. 8. J 

/', 
Choosing the state variables as in Example 8.2.1, we have xI = 13- 8 1 

x 2 ~ 8 2 The control variables are similarly u; = 81 , u 2 = -8 2 and 

the coordination control u~ with the same state equations (8.2.3), the 

same state constraints b. and the same control constraints. Constraint 

(8.3.4) is a statement that arm 2 must allocate a fixed amount of control 

power between the components u~ and u~, balancing the coordination. The 

targets remain the same as in Example 8.2.1, with Eir > ° determining a 

small neighborhood of B" where arm i must deposit each object. We still 
J 

have Ti = A" i,j = 1,2 i f. j, for obvious reasons, see Fig. 8.2. 
J 

We have to make a comment here. Since Ti are closed, so is their inter-

section. Hence the complements iji = Ti - (T I n T2) are open. This means 

that a convergent sequence of guaranteed safe trajectories for arm i 

terminating in Ti need not converge to a trajectory that terminates to a 

point in Ti. To circumvent this difficulty, it is necessary to place an 
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open neighborhood around Tl n T2 and consider the complement of this open 

neighborhood embedded in both targets, Ardema-Heymann [IJ. We assume such 

a neighborhood to be negligibly small. 

With all the above, by the same argument as in Example 8.2.1, con

trollers (8.3.5), (8.3.6) generate complete 1,2-controllabilities for 

collision-first specified by the objectives of the arms. o 

The latter comment as well as the discussion of i-controllability in 

~xample 8.2.1 is a part of the more general problem of sufficient conditions 

for i-controllability. By definition, for the case of unknown w (.) , such 

condi tions are identical with conditions for strong controllability for Q 

in troduced in Chapters 3-7. while for the case of known w (.) , they coincide 

with conditions for controllability forQ. In turn those conditions are 

directly obtainable from the conditions for strong controllability for Q 

by fixing w (.). The same applies now. We may use conditions for strong. 

controllability for Q as conditions for i-controllability, fixing w (.) 
when applicable. 

The regions 

Section 5.4. 

Ili are then found by the same methods as discussed in 
q 

The competitive nature of our game appears in the strong mood of play, 
-i 

where a winning control program P (.) must be found to secure Q (i) against 

all the options of the opposition p j (.) , j ii, and all options of 

uncertainty w. The corresponding dynamical carrier for the case is qUite 

naturally the contingent equation 

2 {-f(--1-2- )I- i p-i(_-jt),uj€u. - w} x € x,u,u ,w,t u € X,U, ,w€, 
J 

(8.2.7) 

i,j = 1,2, i i j , 

still with the game motions q, (xo , to'·) : lR+ .... Il, but wi thin the class 

denoted Ki (xo , to)' and with attainability sets q,i (xo , to' t) at t ~ to , 
i -0 ) and reachability sets q, (x ,to,rto,t) at t ~ to. The reachable cone 

q,i (xo ,to ,lR+) is called the strong semi-game for player i, briefly i-game. 

DEFINITION 8.2.2. The game (8.2.1) is called strongly i-controllable at 

xO € f:, for Q (il 

from Ki (xo , to) , 

-i 
if and only if there is P (.) such that all game motions 

+ 
to € R of (8.2.7) exhibit Q (i) • 

As before, xO is strongly i-controllable for Q (il , the set of all 

such xO forms the region of strong i-eontroUability for Q (il , denoted 
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~~ .. It is also called i-strong region or i-winning region. Any subset 

of ~~ is strongly i-controllable for Q (il. Observe also that, as we 

defined it, the strong i-controllability is to-uniform. The corresponding 

program pi (.) is called a winning program. 

-i 
In general terms, the winning program P (.) for Q (i) may be accom-

panied by a winning program pj (.) for Q (j), j" i, on the same subset 

of ~. Consequently we may have the joint winning region 

W~2 ~ ~~ n ~~ " <p (8.2.8) 

This may be either undesired or convenient. For instance, in aircraft 

combat, it would mean mutual kill, in the case of the two robotic arms, 

operation on the same workpiece. Then, it may be of interest to define the 

region of gUa:I'anteed i-winning lll~ ~ ~~ - ~~ from which the winning pj (.) 

is excluded, and we always have 

(8.2.9 ) 

On the other hand, the property (8.2.8) is contradicted in the strictly 

competitive game in which the opposition has no objective on its own but 

only attempts to contradict Q (i) , say Q (j) = no Q (il . 

have 

whence all i-winning regions are guaranteed, that is, 

In such a game we 

~i 
Q 

(8.2.10) 

The reader might have observed that technically, when forming the 

strong semi-gcune, we adjoined the uncertainty vector w to the action of 

the opposing program pj (.). Such a game is then formally played against 

U. x W, see (8.2.7), although the control variables uj are governed by 
J. 

pJ (.). The reverse case is also possible. Suppose that the game is 

strictly competi ti ve and that player j is a disorganized nature, having 

no control program. Then he becomes a "passive opponent" with undefined 

but bounded uj (t) E U. which may be adjoined to the uncertainty vector 
J 

w (t) augmenting it to w' E U. x W. We call such a scenario game against 
J 

nature or worst case design. It obv~ously coincides with the control under 

certainty discussed since Section 2.2. 

We conclude immediately that sufficient conditions for strong i

controllability for Q (i) are the same as for strong controllability for 

Q, but with w' E U2 x W replacing w E W. Hence the corollaries 

generating the controllers are the same and the regions ~~ are determined 

by the techniques of determining ~Q'S, see Section 5.4. 
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The above applies to all objectives Q introduced in Chapters 3-7 

which we would like now to turn into Q(i)'s of the strong semi-games 

concerned. In particular, it applies to collision-first or capture-first 

of Section 6.4 which seem to appear in the majority of game scenarios. We 

may as well state the conditions for one of the two, namely capture-first. 

and sets 

as well as functions 
i i L'lt ,L'l2 defined in Section 

6.4 without the superscripts, we have the following sufficient conditions. 

CONDITIONS 8.2.1. The game (8.2.1) is strongly i-controllable on L'l~ for 

capture-firs~ in ~t avoiding Ai if there is a program pi (") and 

functions v~ (.) ,v~ (.) defined on t,~ such that 

(i) -+00 as Ixl -+ 00 ; 

(ii) L'l~ is strongly positively invariant; 

(iii) iii E pi (x, ii j ), there are constants for all 

i > 0 c f - i , cA such that 

i - T - - -i _j _ 
SUp_j _ VVf(x) ·f(x,u ,u ,w,t) 

u ,w 
(8.2.11) 

The proof is the same as for Conditions 6.4.2. We also have the same 

estimate for the i-winning region which is the maximal 

(8.2.13) 

obtainable under suitably selected 

We have mentioned already that the winning controllers may be found 

from corollaries designed in the same way as in Chapters 3-7. Here is one 

for our case, with the aim to satisfy (8.2.11), (8.2.12). 

COROLLARY 8.2.1. Given 
- 1 - 2 -* u*,u*,w E Ut x U2 x W 

(XO,tO) E L'lo x F-, if there is a triple 

such that 

. f ""i (- ) T - (- -1 - 2 -) i ~n -i SUP_j _ VV f X ·f x,u ,u ,w,t ~ -cf u u ,w 

i - T - - -1 -2 -sup_i inf-j _ VVA(x) 'f(x,u ,u ,w,t) ~ -cA ; 
u u ,w 

then (8.2.9),(8.2.10) are met with ii! E P!(x,iij,t) 

378 

(8.2.14) 

(8.2.15) 



www.manaraa.com

EXAMPLE 8.2.3. Let us return to the turret game of Example 8.2.1 with the 

described air combat. 

(A) We consider first the l-game, searching for the strong l-controll-

ability. Take and 

TI ~~: = {(xI,x2)lv~ $ E I } 

Al c ~~ {(xI ,x2 ) Iv~ $ E) 

I I We need to find constants cA,cf > 0, generating the maximal 

': {<x"X,) " I v~ (xL, > vi, (i~~ ,J 
such that for all x in this set there exists a control program p! (.) 

generating u!(·) for which 

IJVI -c I 2 2) $ 
I 0 sup f·f x,u*,u l ,u2 -cf < 

u 2 u 2 
I' 2 

(8.2.16 ) 

inf IJVI -C * 2 2) ~ -c l 
2 2 

A·f X,U ,u l ,u2 A 
u I ,u2 

(8.2.17) 

Then such ~I 
0 

constitutes a winning region for player 1. From (8.2.16), 

~UP2 (ui - u l ) $ -c l < 0 , 
f 

u l ,u2 
A2 - u l $ < 0 u l -cA 

} (8.2.18) 

For a positive c~ to exist, this necessarily implies that Q~ - QI < 0 

that is, YI ai/al < 1. Select the control program for player 1 to be 

for all time. Then the largest 

independent of the state, is c l 

f 
Al "'2 = U - U 

c~ compatible with (8.2.18), 

From (8.2.17), 

inf (_u2 ) ~ -c l , } 2 2 2 A 
u I ,u2 (8.2.19) 

c l 
A 

~ 
A2 u 2 

The smallest c~ compatible with (8.2.19), independent of state, is 

c l = 
A2 Consequently for YI < 1 , 

A 
u 2 

Al ""2 u - U U2 

1 ~I I 
---- > 

0 X - E 
{(X"X,) d 

XI - EI 
" I 

2 2 

) (8.2.20 ) 

{ <x, ,x,) " I x, -', > 1 y~ Y , (x, - " ) I 
So the defined ~~ is easily shown to be a subset of 

~I. Namely, integrating the state equations, we see that if player 1 
f 

always selects u! he will win from all initial states satisfying 
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(8.2.21) 

Indeed, the greatest effect player 2 can have on the outcome is when his 

control selection is and u 2 = Q2 to give the greatest rate of 
2 2 

decrease of x 2 towards £2. So our I'l~ is an underestimate of I'l~ with 

the latter defined by (8.2.21). 

For y 1 <:: 1, we clearly have I'lf cp. 

(B) 

v2 
A 

Consider now the strong game for player 2, the 2-game. 

wi th reversed and where 

and 

Then the corresponding conditions to (8.2.16) and (8.2.17) 

2 - - 1 2* 2* _c 2 < 0 sup \!Vf·f (x,u ,u1 ,u2 ) ~ 
f 

u 

inf 2 - - 1 2* 2*) _c 2 \/VA·f(x,u ,u1 ,uz <:: 
u 1 A 

Take 

are 

(8.2.20) 

(8.2.21) 

wherefrom the program of selection of ui,u; for player 2 is to be found. 

From (8.2.20), sup (-u~) ~ -c} < 0, or 
u1 

-u~ ~ -c} < 0 (8.2.22) 

2 This necessarily requires the selection of u 2 to be nonzero. From 

(8 2 21) inf (u2 _ u 1 ) <:: c 2 or u 2 _ Q1 <:: _c 2 or .., 1 - A' 1 A 
u 1 

c~ <:: Q1 - ui • (8.2.23) 

Equations (8.2.22) and (8.2.23) are independent of the state variables. 

From (8.2.22), a maximum value of c; is given by c~ = Q~/ (1 + 0) for a 

selection of u~ = Q~/(l+o) with 0 E [0,00). This means that acceptable 

values for ui satisfy 

Hence we can write, selecting the smallest 
2 

of u 1 ' 

(11 - Soui/ (1 + 0) 

Q;/ (1 + 0) 

with f3 E rO,l] . 

(8.2.23), given a value 

1 + 0 (1- Sy 1) 

Y2 

Now provided y 1 ~ 1, that is, 
.......2 ",,1 u 1 ~ U , the smallest value of 
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is obtained when 0 = 0 . So u~ and 

o In this case, the maximum winning region for player 2 is 

For Yj ,,; 1, it is possible with S = 1 to select 0 sufficiently 

2* 2* large, this defining the selection of u l and u 2 to make the above 

221 expression for cAlcy: negative. Equivalently, for Y l > we can select 

a S E (0,1) such that Su~ 

u~* = Suf, u~* = 0.~ (1- S) 

0. 1 Then we require that player 2 play 

In this case then, /:,; must be all of /:'. 

From the above, it may be seen that whence immediately 

The reader may as well take note of this fact which would be 

useful later. The above does not mean that the game is strictly competi

tive, as (8.2.10) was only necessary for such a game, that is, followed 

from it. D 

EXAMPLE 8.2.4. Recall Examples 6.3.1, 6.4.1 and rearrange the scenario 

into the game between the craft being an evader or player 2, with the speed 

VE = const and the turbulence being now a programmed pursuer, or player 1, 

wi th the speed The kinematic eauations (6.3.7) become 

now 

R VE cos (8 + u 2 ) , 

(8.2.24) 
ReE = VE sin (8 + u 2 ) , 

I.- V cos u l 2 = - VE cos u , 
p 

re V sin u l . 2 = - V E Sln u 
p p 

with the change of notation seen in Fig. 8.4. 

L 

REFERENCE AXIS 

Fig. 8.4 
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The targets are now specified as 

TI D. 
{ (R,8 E ,r,8p ) E: JR4\ r:<: rp} 1\2 

} D. 
(8.2.25) 

T2 {(R,8E ,r,8p ) E: lR4 \R:<:rB} Al 

and the two strong semi-games are as follows. 

2-game: The evader wishes to escape to his shelter before being 

in tercepted by the pursuer, that is, capture T2 avoiding A 2 = TI . 

l-game: The pursuer wants to intercept the evader before the evader 

reaches his shelter, that is, capture TI avoiding 1\ I = T2 • 

Bach of these objectives is to be attained against all options of the 

opposition. The 2-game has been played under different notation in Example 

6.4.1. It was found that the winning region was 

D.; : r - rp > (V E +Vp) (R - rB)/vB (8.2.26) 

and the control program was determined by cos (8 + u 2 ) = -1 . Let us now 

complete the study by investigating the I-game. The investigation is made 

easier by redefining the coordinate system as shown in Fig. 8.5. Observe 

that interchanging the positions of evader and pursuer does not change the 

results as long as the relevant connection between coordinates is realized. 

/ 

REFERENCE AXIS 

Fig. 8.5 

Then the kinematic equations of motion become 

R = Vp cos (8 + u l ) , 

R81' = Vp sin (8 + u l ) , 
(8.2.27) 

2 I 
r = VE cos u - Vp cos u 

reB = ( . 2 Vr; Sln u - . I ) Vp Sln u 

To apply Conditions 8.2.1, let VI D. 
we F r , and 

382 



www.manaraa.com

L'l; v~ $ rJ::. Then condition (iii) becomes 

SUPu2 (VE cos u 2 - Vp cos u 1 ) $ -c; 

or 

V I < 1 VE - P cos u - -cF ' 

or 

Then L'l is defined by 
0 

c 1 
A 

(r- rp) R - r E > 
1 

C 
F· 

Now condition (8.2.28) implies 

1 $ < 0 . 

(8.2.28) 

(8.2.29) 

(8.2.30) 

This inequality imposes the restriction Vp > VE • Furthermore it is 

satisfied if 

c; = Vp(l-o)/(l+lS) for IS E [0,00) , 

where a = (VE/Vp ) < 1. we also observe that cos u 1 > (VE/Vp ). For a 

given c~ the region L'lo is maximized by choosing the smallest 

that condition (8.2.29) is met for all possible 8. Now 

1 cA such 

we select 

The larges t value of - Vp cos (8 + u 1 ) is Vp , so 

Therefore 

c~/c; = Vp (1 + 0)/ (V p - vEl . 

The set L'lo is maximized into the winning region by taking IS 

gives 

L'll 
F 

provided Vp - VE > 0 as stated before. With IS = 0 , 

o which 

(8.2.31) 

which 

is obtained when cos u 1 = 1. This, thus, is the winning program for the 

pursuer. he heads always toward the evader along the line of sight. As 

this inequality is not dependent on 8E , 8p , returning to the original 

coordinate system, we obtain 

(8.2.32 ) 

o 
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EXERCISES 8.2 

8.2.1 Given the selector equations 

X2 = -u2 x -ax -bx3 +u l 
2 I 1 

with a,b > 0, u 2 IE: [O,lJ, write the l-game in terms of the 

corresponding contingent equations and specifying suitable pl(.) 

define the attainability sets. Assuming the objectives as capture 

in respective targets, design the winning pi ( .) and discuss the 

region of strong controllability. 

8.2.2 Consider the system 

with x IE: [-1,13 C JR, luil $ 1, i = 1,2, x(O) = xO . 

(i) Suppose Q(l) ,Q(2) mean collisions with the targets 

T I : X = 1, T 2 = X = -1, respectively. Find the winning 

strategies and strong regions. 

(ii) Suppose Q(l) ,Q(2) mean avoidance of the sets Al : x = 1 , 

Find the winning strategies and strong regions. 

Discuss the relation to the case (i). 

8.2.3 Consider the system q + u l + II(q) = u 2 with q IE: tJ. C JR, 

tJ. : II(q)q 2': 0; u 2 constrained by the limitation of power luZql $ N , 

for some N > 0 and with the target TI = {(q,Cj) IE (q,q) os; l}. Find 

the winning strategy and strong region for capture in TI subject to 

the restriction that lull < M(N). Specify the relationship between 

the bounds Nand M. 

8.2.4 In the game described by the dynamics 

384 

2x Z - (1/2x l ) (x~ +x~ _u1UZ) , 

- 2xI - (1/2xz ) (xI +x~ -uIU Z) 

with u l IE: [O,lJ, UZ IE: [1,2J the player 1 wants to collide with 

the target TI : x~ + x~ $ 1 while the player 2 wants to avoid the 

A Z Z interior of it, that is, z: XI + Xz < 1 . 

Taking V = rZ, show that V < 0 if r > uIUZ , V = 0 if r = ulU Z 

and V > 0 if r < ulU Z and consequently that both players achieve 

their objectives by setting ulUZ = 1, that is, playing u l = (l/uz ). 



www.manaraa.com

8.2.5 A unit mass located at the position x(t) ,y(t) in the horizontal 

plane Oxy is connected by two springs with coefficients k I' k2 to 

the points (a,O) and (a,b) , respectively, see Fig. 8.6. Players 

1 and 2 have non-stretchable ropes which are connected from (x,y) 

to (0,0) and (O,b) respectively. Suppose the mass is initially at 

rest at (xo ,yo). Player 1 wishes to transfer (x,y) from (XO,yo) 

to (0,0), player 2 wants to transfer the same (xo ,yO) to (O,b). 

y (0 b) 

Uz. 

~----------------~~-- ~ 
(0.0) 

Fig. 8.6 

The force at their disposal is 

The motion equations are 

x 

y 

k (a-x)2 
I + 

+ 

k2 (a - x) 2 

I(a - xj2 + (b - y) 2 

+ 

i 1,2, respectively. 

choose state variables, write the state equations of the game, 

design controllers and specify strong regions of controllability for 

attaining the objectives mentioned. 
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8.3 MAP OF A GAME 

The selection of control programs and the determination of the regions 

of i-controllability and i-winning regions must be based on the interface 

of the two strong semi-games concerned. Such an interface can, in turn, be 

established by examining the decomposition of the playing region t, into 

sets of options which we have called a map of the game. 

Fig. 8.7 shows what may be concluded directly from the definitions of 

Section 8.2. At the outset, unless otherwise stated, we exclude the dead 

zone t, from our study assuming t, = t, I U t, 2 , which yields t, = cp 
n q q n 

Since strong i-controllability implies i-controllability for the same 

Q (i) , \,e have 

(8.3.1) 

as shown in Fig. 8.7. Let us now introduce the semi-neutral sets 

t,~ ~ t, - l\~, called i-neutral. By definition of t,~, the strong i-controll

ability for Q (i) is contradicted on t,~, namely for each pi (.) we have 

-j Ki -0 -0 Ai 
P*(·) such that there is at least one motion of (x ,to)' x :- LIN' 

which does not exhibit Q(i) • This is the defining property of t,1. 
N 

Let us now introduce the neutral set: 

on which there is no strong winning for.either of the two players. We may 

now investigate the alternatives to such winning. 

For -0 
€ t,N n t,i we know that there exist a pair pi (.) ,132 (.) such x q 

that every resulting game motion has the property Q(i) Suppose player i 

persists in playing pi(.) If player j plays 
~j 
P , he will certainly let 

Fig. 8.7 
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player i achieve his objective. There is no certainty in his achieving 

Q (j) unless xO also belongs to I'Ij and 131 (.) ,132 ( .) is a pair of 
q 

programs for which every resulting motion of K (xo ,t) exhibits Q (j) 

However, player j may choose for each 13i ( . ) to play p~ ( .) , as above 

in the defining property for I'I~. He then assures that player i cannot 

achieve his objective Q(i). But again, if xO E I'I j and the pair 
-i -j q ° 
P (.) ,P * (.) is sufficient for j-controllabili ty at x , player j may 

still achieve his objective Q(j). 

If such xO E I'I~ - I'I~ I player j can force what we may term a draw 

by plying p~ ( . ) for each program pi ( . ) of player i. (Neither of the 

DroDerties Q (1) and Q (2) are attainable on trajectories under this 

strateqy selection.) Similarlv, if such xO E l'I~ l'I~ I player i can 

force a draw. 

We shall therefore call thp. set of rheqe -0 
X I 

D ~ [l'I 1 _(l'I 2 Ul'll)]U[l'I2 _(l'I 1 Ul'l2)]:=.: D2 U Dl 
q q Q q q Q 

the guaranteed draw region of the game, where Di is the guaranteed draw 

region for player i, sp.e Fig. 8.6. If xO E l'I 1 - 1'12 player 2's guaran

teed draw strategy will be to play p; (j?l) for q each q pI of player 1. If 

xO E l'I2 - I'll , player l's draw strategy will be to play p;(p2) for each 
-2 q q 
P of player 2. 

In the remaining set (l'I 1 n l'I 2 ) n I'IN , we may have all four options: q q 

(a) player 1 achieves Q (1) , player 2 does not achieve Q (2); (b) player 

1 does not achieve Q (1) , player 2 achieves Q (2); (c) both players 

achieve their objective; (d) both players do not achieve their objective. 

For this reason, we can call this region the region of no guaranteed out

come (RNGO), see Fig. 8.6. 

In practice, the regions Wi may become very small and players may be 

forced to use RNGO where they still have a chance to win, in preference to 

the draw regions. It will be seen that, in cases (a),(b) the set concerned 

becomes a barrier separating Wi,s. 

In those games in which a terminal time t f is specified, there may 

be xO in I'll for which player 1 cannot achieve his objective Q (1) wi thin 
q 

this specified time, but would do so if time t f was extended. A similar 

case would exist for xO E l'I~. Under the former analysis, these xO would 

belong to l'In . It would be realistic in some games, for example, the 

turret game, to define the union of D and l'I as the draw region. 
n 
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We have found that in the turret game, see Fig. 8.8, 

<P ; 

I Yz } {(XI,XZ) EtJ. Xz -E Z > l-Y I (XI-E I ) for Y I < 1 

WI <p for YI ~ 1 ; 

WZ {(XI,XZ) EtJ.lxz -Ez < YZ(XI-E I )} for YI:S; 1 

WZ tJ. for YI > 1 . 

Each of the diagrams in Fig. 8.8 cHsplays the guaranteed winning 

regions for the players in each of the three cases Y I < 1, Y I = 1 and 

Y I > 1 • 

RNGO 

(a) (b) (e) 

Fig. B.B 

In the case YI > 1, Fig. 8.8(c), player 2 is guaranteed of a-win in 

all of tJ. with objective Q(2) ; player 1 cannot hope to win unless player 

2 does not play one of his guaranteed winning strategies. For the two 

remaining cases, there exist points in tJ. not in w~ and w~, indeed they 

belong to tJ.~ n li;, that is to the region of no guaranteed outcome. As 

mentioned above, both players cannot achieve their objective, thus case (c) 

is eliminated from our list of cases. Simple examination of programs and 

system equations shows that each of cases (a), (b) and (d) may occur. 

These results may be compared with those given for minimum time 

pursuit-evasion analysis for the turret game in Ardema-Heymann [IJ. 

However, it must be noted that the qualitative objectives defined here for 

the players does not allow for both target sets to be reached simultaneously. 

Some of the following examples have been constructed to illustrate the 

reasoning developed in the previous subsections. 
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EXAMPLE 8.3.1. Consider the turret game of Examples 8.2.1, 8.2.3 with the 

added requirement for it to be completed in the interval [O,tf ) , 

t f = 1f/4. Assume E: I = E:2 = 1f/4, G I 2, G~ = 1 and G~ = 2 

determined previously that 1':,1 = I':, with u~ = 0, u~ = 0 and u l non-
q 

We 

zero. It is now restricted to 1':,1 = {(xI ,x2 ) E I':,jx I < 31f/4}, this being q 
the maximum region for which the trajectory 

maximum Similar reasoning yields 

Consequently we nave 

Wi {(xI ,x2 ) E I':, j x 2 > 2x I -1f/4} 

w2 {(x l ,x2 ) EI':, j x 2 <xI and x 2 < 31f/4} 

A dead zone now exists. It is I':, 
n 

space decomposition is shown in Fig. 8.9. 

IT 
aAq. 

/ 
w' / 0 2 

enters TI, being specified by 

1':,2 = {(xl'x2 ) EI':, j XI < 31f/4} . q 

The state 

An 

----/---/==--:=-: aA2 q, 

/O"GO/ I i' 
/ // 

/ / W2 
/ I 

// 
",/ I 

T2 

~ ~ 3lJf Tr x, 

Fig. 8.9 

The interesting feature of this example is that a draw region D2 for 

player 2 exists, but none for player l. Even though he cannot achieve his 

objective for any strategy p2 (.) , he can play for each pi (.) a strategy 

that will prevent player 1 achieving his objective in this region. The 

region of no guaranteed outcome is shown as the hatched region in the 

figure. 0 

EXAMPLE 8.3.2. We take the game dynamics 

1 - G + u~ , 
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with X I ,X2 E [0, 'ITJ . Player 1 selects his control variable u I from 

[2,3J, and player 2 selects his control variables ui and u~ that are 

constrained by u~ + u~ = 1 with 

Again, take the same qualitative objective properties with time 

restriction in Example 8.3.1 and EI = E2 = 'IT/4 We find by straightfor-

ward analysis that 

WI {(X I 'X2) E 6. I x 2 > XI and xI < 'IT/2} , 

W2 {(x l ,x 2) E 6. x 2 < x l /2 + 'IT/8 and x 2 < 'IT/2} 

6,1 {(X I ,x2) E6, XI < 'IT/2} , 
q 

6,2 {(X I 'X 2) E6. X2 q < XI and x 2 < 'IT/2} , 

6, {(X I ,x2) 
n I xI ,X2 2 'IT/2} 

• 
IT 

:! 

:\ 

w1 
I' t.n 

~ RNGO ,1 

~-~~:-~" 
lP-~ i 

r 2 

IT 

Fig. B.l0 

o 

In this example, there is again a dead zone L , a region of no guar-
n 

anteed outcome, and this time a guaranteed draw region DI for player 1, 

in which he can prevent an outcome in favour of player 2 although he cannot 

hope to achieve his objective, see Fig. 8.10. 

EXAMPLE 8.3.3. Consider the turret game with the same system dynamics and 

objectives (no time restriction) but with EI = 'IT/4 , E2 = 'IT/4 and with 

control selection given by u l E Il,2J , ui E rO,lJ and u~ E Il,2J . 

The following state decomposition is easily determined and shown in Fig. 

8.11: 
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Wi {(Xl ,X 2 ) E t:, I X2 > 2Xl -n/4} 

W2 {(X I 'X 2 ) Et:, I X2 <2x l -n/4} 

t:,l {(Xl ,X 2 ) E t:, I Xz > x l /2 + n/B} 
q 

t:,2 
q 

t:, , 

We can also observe, what will be useful in the next section, that 

the set /:; in this example is separated into the two strong winning regions 

by the set B = {(Xl ,Xz) E t:, I Xz = 2x l -n/4} 

region of no guaranteed outcome. 

This set is in fact the 

[] 

TTrTA~2 ./l;q.= A 

Fig. B.l1 

EXAMPLE 8.3.4. Consider the game described in Example 8.3.3 with a slight 

change in the qualitative objectives of the players. Namely that for 

Q(l) it is allowed for x(t) E TZ when x(t) E Tl, similarly for Q(2) 

(mutual kill). It is easy to show that 

t:,~ {(Xl ,X 2 ) E t:, I Xz ~ 2Xl -n/4} 

t:,~ {(Xl'XZ) Et:, IXz $2x l -n/4} 

t:,l {(Xl ,Xz) E t:, I X2 ~ x l /2 + n/B} 
q 

t:,z t:, 
q 

We now have a region of joint win 

WIZ = t:,~ n t:,~ = {(XI,XZ) Et:, Ixz =2x l -n/4} , 

and the joint winning strategies are determined by u l 

z 
Uz = 2 . 

2, u~ 1 and 

D 
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8.4 THE BARRIER 

i The last two examples indicate that the winning sets 6Q , i = 1,2 

may be separated (Example 8.3.3) or unseparable (Example 8.3.4). This 

fact is in each case decisive in characterizing the map of the game. The 

separation is established if we can find a barrier between them. 

The reader is now asked to recall the concept of P(·)-nonpermeable 

surface (Definition 3.1.6), with necessary condition (3.1.21) and sufficient 

Conditions 3.1.2, as well as Corollary 3.1.2, and the concept of the weak 

P(.)-barrier II' for the objective Q, see also Section 5.4, Fig. 5.15, 
q 

and condition (5.4.10). We replace the uncertainty w(·) in the above by 

the active player in opposition to our control and such uncertainty acting 

together, at the same time requiring of our control to be robust against 

all options of the opposing pair. This relates the nonpermeability to a 

strong semi-game and requires readjustment of the concepts concerned. We 

take 2: i as a surface separating 6 into two disjoint open sets 6 i ::> 6 i 
'6 i P P Q 

and C6 l = 6 - 6 which replace 6 and C6 , respectively, see Fig. 3.2. 

The surface is then said to be i-nonpermeable, if and only if for all 

xo E 2: i , to E JR, there is pj (.), j t i, such that ¢ (x o , to' .) 

E Kj (x o ,to) implies 

(8.4.1) 

Similarly as in Section 3.1, we conclude that such 2: i must belong to 6 i 
, , N 

and when it is smooth with non-zero gradient nl directed away from 6 l 

we have 

_i T - - -i -j -(n ) . f (x, u , u*, w, t) ~ 0 (8.4.2) 

for all 
_i -i-
u E P (x,t) Sufficient conditions for 

i-nonpermeability may be formalized similarly to Conditions 3.1.2. 

Define the sets Di ~ t:.! n [ii , 

scenarios they may be empty. 

i 1,2 and note that for some 

CONDI'I'IONS 8.4.1. A smooth surface 2: i separating 6 into two disjoint 

open sets 6 i , C6 i is i-nonpermeable, if for each pi (. ) on non-empty Di 

there is pj (.) and a C I-function v~ (.) : Di + JR such that for all 
i + (x, t) E D x JR we have 

(i) 

(ii) for each ~j E pj(x,t) , 
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(8.4.3) 

for all 
_i -i-
u E P (X,t) , W E W 

The proof follows by the same argument as for Conditions 3.1.2, that 

is, contradiction between (i) and (ii) if a motion from Li were to enter 

/',i. 

The obvious choice of v; (.) is to make it an extension over /',! of 

the test function which generated the strong controllability in /',~, say 

VQ(j) (.), so that we have V;(X) VQ(j) (x) , and we can identify the 

levels of both functions. The case will be illustrated by examples later 

in this section. Identically as in Section 3.1, if Li is specified by 

a Vi-level with \7vi (x) = ni t- 0, condition (8.4.3) becomes necessary and 

sufficient. 

Obviously Li c /',i , and there are many such surfaces. The surface 
N 

whose /',i is minimal, that is, such that there is no other Li between it 

and 3/',~ is consider~d the semi-barrier for the player i, briefly 

i-ba:t'rier, denoted B~. 

As we have seen in Section 

the largest size obtained when 

5.4, 

Bi 
Q 

B~ estimates 

3,/',j ~ /',j n /', 
Q Q, 

/',~ from outside with 

j t- i . For all 

practical purposes, our success in,separating /',Q'S is assessed, if we can 

establish the mutual behavior of BQ'S. First let us consider the special 

case when /',N ¢ Then the pair /',Q'/',Q partitions /', and we may con-

1 d h 'H 1 ", ,2 b 1 t f th t 'Ai h cue t at aLlQ a LlQ e ongs 0 one 0 e two s rong regl.OnS LlQ' t e 

other left open. Such a joint boundary defines both strong regions, 

separating them, and determines completely the map of the game. 

The alternative case of /',N t- ¢ is more complicated. When /',Q'/',Q 
Ai i 

are disjoint: LlQ = WQ , i = 1,2, then such nonempty /',N separates them. 

To emphasise this separating role, let us introduce the nonpeTmeable 

surfaces 

L ~ Ll n L2 , (8.4.4) 

obviously located in /', , each being both l-nonpermeable and 2-nonpermeable. 
N 

The family of such surfaces may be void or it may fill /',N' in the two 

extreme cases. 

From the definition of Li and (8.4.4) it follows that L is positively 

invariant under the pair p!(·),P;(·) generating the 2,1-nonpermeabilities, 

respectively, and also that both necessary conditions (8.4.2) apply. In 
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particular, considering that at the points of I:, n 1 

that there is pj(.) for which 
* 

-i T - _ -i _j _ 
(n ) ·f(x,u ,u*,w,t) 2: 0 

-2 -n it follows 

(8.4.6) 

-j -j-
u* E P * (x,t) 

_i 
u E U. , 

1 
t 2: to' and that there is 

for which 

_i T - - -i -j -
(n ) ·f(x,u*,u ,w,t) ~ 0 

_i -i_ 
for all u* E P (x,t) , W E W 

-i T - _ -i _j -
minui maxuj (n ) ·f(x,u ,u ,w,t) 

for i,j 1,2 and for all W E W . 

o 

(8.4.7) 

We conclude 

(8.4.8) 

The reader may like to recall our derivation of (5.2.11) and (5.2.16) 

with w replaced now by uj . The arguments are the same. The sufficient 

condi tions for I: are obtained by applying Conditions 8.4.1 twice, that is, 

for i,j = 1,2 and i,j = 2,1 It is usually practical to take 

V~(x) 
!':. i _ 

with calculated a value of Vi (.) = C -VB (x) , C = const as at 
B 

the boundary of its domain of definition. If the constant is difficult to 

obtain, we may use the alternative V~(X) = l/V~(X) , with the same result. 

The technique is illustrated in examples below. With the mentioned choice 

of V~ (.) , we in fact reduce the two functions to a single function v! (.) 
and may state the sufficient conditions jointly as follows. 

CONDITIONS 8.4.2. A surface 

each pi ( . ) there is pj ( . ) 

I: defined by (8.4.4) is nonpermeable if for 

i,j = 1,2 i ~ j, and a C1-function 

VB (.) L1N "'" lR, with non-empty D = Dl U D2, such that for all 

(x,t) E D x lR+ we have 

(i) 

(ii) 

(iii) 

394 

vI: < VB(x) < + 
vI: , 

with vI: sup VB(x) I x E dD i i 1,2 

+ inf VB(x) I x E (lD j j 2,1 vI: 

for each 
-j -j-
u* E P* (x,t) , j = 2,1, we have 

_ T - - -i -j -
17vB (x) ·f(x,u ,u*,w,t) 2: 0 , 

for all 

for each 

_i 
u W E W 

i 1,2, we have 

+ for all (x,t) x lR , 

(8.4.9) 

i 1,2 ; 

(8.4.10) 

j 2,1 . 
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The proof follows by the same argument as for Conditions 8.4.1 used twice, 

with V~(X) ~ C -V~(X) . 

when L is represented by a VB-level, similarly as for Conditions 

8.4.1, (8.4.9) and (8.4.10) become also necessary, and by the same argument 

as for deriving (8.4.8) we have 

W _)T - - -i -j - ) minui maxuj B(x ·f(x,u ,u ,w,t = 0 

for i, j = 1,2 , i 'I- j, and for all W E W • 

(8.4.11) 

If there is only one L separa.ting f1~,f1~ we conclude that Li 

Conversely, if two semi-barriers B~ intersect, we obtain L which is 

unique. We shall call it the barrier: 

B ~ B~ n B~ . (8.4.12) 

By such design, B is the minimal liN' that is, it is the lower estimate 

of the neutral set. In fact any liN larger than B may be considered a 

dispersed barrier, which is particularly useful when B is empty. Let us 

suppose that it is nonempty. In general B does not subdivide II into two 

disjoint sets. In fact, the barrier itself may be disjoint. For instance, 

as shown in Fig. 8.7, the barrier reduces to the two isolated points which 

constitute the intersection of the boundaries d'lI~ n d'f1~ . On the other 

hand, when lI~,lIQ are arbitrary but open and disjoint, the nonempty B is 

shown in Fig. 8.12. Obviously the above cases occur only when B~ d'lI~ 
i,j = 1,2, while d'lI~ n d'lIQ 'I- ~, which is a special case. 

By definition the barrier is nonpermeable, thus positively invariant 
-1 -2 

under the corresponding pair P*(·) ,P*(·) and such that (8.4.tJ) holds, or 

if it is defined by some VB-level, (8.4.11) holds. 

the barrier, in the general case when the boundaries 

sect, we execute the following three steps: 

8 2 
Q 

~AN/ 
Fig. 8.12 

Thus in order to find 

d'lI i may not inter-
Q 
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(a) find a surface defined by (8.4.8); 

(b) check whether it is nonpermeable; 

(c) if yes, check whether it is single in ""N; if not single, 

go back to (a). 

For item (b) we use twice Conditions 8.4.1, or Conditions 8.4.2. When we 

may find a smooth function VB(·) satisfying (8.4.11) we may proceed 

directly to step (c). 

The si tua tion becomes simpler in the case when ~ n "" i = cp, which 

makes Conditions 8.4.1 or 8.4.2 not only useless, but also redundant. 

Indeed, then ""i = ",,~, i 1,2, implying that a'''''Q n a'''''Q = ""N 'I cp 
i 

Henc.e, by the definition of ""Q' both boundaries are j-nonpermeable and 

their intersection is the only nonpermeable surface between ""Q and ""Q 
implying 

(8.4.13) 

The latter is obviously the necessary condition, but if we can find the 

nonempty intersection of boundaries, we may consider it a reasonable candi

date for the barrier. Such a candidate may be confirmed in three equivalent 

ways: 

(a) Showing that a""j are i-nonpermeable, for i,j=1,2, 
Q 

that is, that a""l n a""z = L • The fact that such L 
Q Q i 

is unique: L = B follows from the definitions of ""Q. 

(b) Showing that 

""! = c""i = ",,~, i,j = 1,2 

In fact, since by definition 

(8.4.14) follows if only ~! 
see Example 8.4.3. 

~j c ~i, the condition 
Q. N . 

= C. ~ c • J .. 1 2 Ll LlQ , ~, J = , , 

(c) Checking the candidate against the following. 

(8.4.14) 

CONDITIONS 8.4.3. Given two strong regions ""i , i = 1,2 
Q 

together with 

a""Q n a""Q 'I cP, the 

two C1-functions 

corresponding winning programs pi(.), such that 

latter intersection is the barrier B if there are 

V i (.) 
"" 

all (x,t) 
-i 

we have : -+ :JR, i = 1,2 , such that for E ~N x :JR 
B 

(i) V!(X) < Vi(~) 
B 

, V ~ E a""l 
Q 

n a""z 
Q ; 

2,1 , 

(8.4.14) 
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I 

/!. 

/!.1 c -I· /!.2 
C 

r1 XO X :0 XO T2 
0 .. I • 0 
0 lJ:i ~ 

Fig. 8.13 

-
W E W, i = 1,2 • 

The proof follows immediately from the fact that conditions (i), (ii) 

make 6,i 
N ' 

i = 1,2 strong regions for Q (j), j = 1,2, thus implying 

nonpermeability as in method (a) • It is practical to take Vi (.) 
B 

coinciding with v j (.) 
Q 

on 6,j 
Q 

i _ 
I x E 

6,j V~(X) VB(x) 
Q - (8.4.15) 

EXAMPLE 8.4.1. We return to Example 5.1.2 but replace the pair u,w in 

(5.1.17) by our present -1 -2 
U ,u with the same constraints, the same objec-

tives including targets, and the same scenario. Then the state equation 

becomes 

x = U 1 cos X + U 2 sin x (8.4.16) 

with luil:'> 1, 6, ~ {x E lR 10 :'>x :'>TI/2} and the objectives are Q(l) : 

capture in T~ = {O}, and Q (2) : capture in 

We use Conditions 5.5.1 and let and 

conditions (i), (ii) , see Fig. 8.14. 

XO ~ XO 

0 1h 
/!.1 c -I" 

Fig. 8.14 

T~ = {n/2} , 

v 2 ~ (TI/2) - x 
C 

1J'2 
t:J c 

see Fig. 8.13. 

, satisfying 
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Then we calculate along the trajectories: 

• I 
X = U l u 2 sin x ) Vc cos x + , 

·2 -x _u l cosx u 2 sin x Vc -
(8.4.17) 

in order to check condition (iii) . As seen in 

X E [O,n/4) , and : X E (n/4, n/2J 

[O,n/2) there is 

Example 5.1.2, ~~ 

Indeed, taking Vi = x, we 
C 

observe that for u l = -1 winning Vi = x < 0 
C 

against all -1 ::; u 2 ::; 1 , which implies x (t) -+ 0 On the other hand, 

taking v2 = 
C 

(n/2) - x , we observe that for x E (n/4 , n/2J there is 
2 1 winning V2 = < 0 for all -1 ::; u l ::; 1 which results in u -x , 

C 
x(t) -+ n/2. It follows that d~l n d~2 = {n/4} Turning now to 

C C 
the 

A I 2 barrier, observe that all points in L1 are VC,VC -levels, and that at 

d~~ = {n/4} we have x (u l +u 2 ) (12/2) so if player 2 plays u 2 = 1 

then even for u l = -1 we still have x o Conversely if player 1 

plays -1, we also have x = 0 So x = {n/4} is a rest point, 

wherefrom no motion can leave, that is, nonpermeable, positively invariant 

l:. By the properties of the surrounding ~~ it is also a unique such 

point, thus we conclude that B = Bb n B~ = {n/4}, without having to use 

Conditions 8.4.3. For the sake of illustration, let us however consider 

V~ = (n/2) -x, for x E [n/4 , n/2J; v~ = x, for x E [O,n/4J, see 

Fig. 8.13. Satisfaction of Conditions 8.4.3 is seen immediately from our 

discussion of v~, V~ D 

EXAMPLE 8.4.2. We return now to the turret game of Examples 8.2.1, 8.2.3 

with the scenario in Fig. 8.1. Recall the targets in Fig. 8.2 and the 

summing up discussion in Section 8.3 with Fig. 8.7. We continue here 

assuming the case Y I < 1, which gave the two winning regions 

~l Wi {(x l ,x 2 ) E ~ I x 2 - E 2 > y 2 (x l -E I )} ) f f 
~2 W2 {(x l ,x2 ) E ~ I x 2 - E 2 < Y 2 (x I - E I ) } f f 

(8.4.18) 

Then the nonempty set 

B d~ I n 
f d~; = {(xl ,x2 ) E~ I x 2 - E 2 = Y 2 (x I - E j ) } (8.4.19) 

is the obvious candidate for the barrier, and since by (8.4.18) we have 

~ = c~i = ~fo for i,j = 1,2 and i,j = 2,1 it is the confirmed candi

date. It can be also confirmed using the controllers and functions 

V~(.) ,V~(.) of Example 8.2.3 to satisfy Conditions 8.4.3. 

EX~1PLE 8.4.3. In the pursuit-evasion Example 8.2.4, for two strong semi

games: pursuer 1 attempting to intercept the evader 2 before he escapes 
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to shelter, and evader 2 attempting to escape to the shelter before being 

intercepted by the pursuer, we obtained the two winning sets, (8.2.31) and 

(8.2.26) , 

f,,1 WI R - > 
Vp(r-rp ) 

) 
r 

F F E Vp - V E 
(8.4.20) 

f,,2 = w2 r - rp > (V E + V p ) (R - r E) /V E F F 

We shall show that the boundaries intercept: df,,1 n 
F 

df,,2 
F t <P , meaning that 

there is a set 

{(R,eE,r,ep ) Ef"IR-rE = 
Vp (r - rp) V +V 

(R - r E ) } B , and E p 
r-r 

Vp -VE P V E 

(8.4.21) 

which is nonempty. In the above L is such that 

(8.4.22) 

Writing L ar + b, R = Ar + B where 

v V r p 
b 

P P 
a = --- r E - ---

Vp -VE Vp -VE 

VE V r 
E p 

A B r E 
Vp +VE V +V 

P E 

and substituting into (8.4.22) we find 

(a 2 _1_A2 -2Acos8)r 2 + (2ab-2AB-2Bcos8)r+b2 _B2 o. (8.4.23) 

A value for r in equation (8.4.23) is obtainable if 

Examining N we see that when cos 8 = 1 (8 = 0) , 

N = (Ab - aB + b) 2 ? 0 (8.4.24) 

and when cos 8 = -1 , (8 IT) , 

N = (Ab -ab _b)L ? 0 . (8.4.25) 

From (8.4.24) and (8.4.25) we deduce that, even if for values of cos 8 

between -1 and 1, N becomes negative, there must still remain a nonempty 

set of e for which N? 0 and hence solution for r from (8.4.23). This 

shows that the intersection of the two boundaries concerned is nonempty. 

In general we obviously have ~i ~ ~j, for i = 1, j = 2 and 
N f 

i 2, j = 1. In terms of (8.4.20) it means that the set defined by, 
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see Section 8.2, 

should be covered by the set 

R - r ,,; 
E 

The condition (8.4.26) may be rewritten as 

which by virtue of 

proves our point, see Fig. 8.15. 

Fig. 8.15 

Similarly, 

o (r - r ) 
> p p 

R-rE 0-0 
P E 

should be covered by 

which may be rewritten as 

(8.4.26) 

(8.4.27) 

(8.4.28) 

(8.4.29) 

(8.4.30) 

(8.4.31) 

(8.4.32) 

In view of (8.4.29), comparing (8.4.30) and (8.4.32), we prove our second 
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point, see Fig. 8.14. To check (8.4.14) we need i,j 1,2 

which occurs when, see (8.4.21), 

thus defining the barrier B. o 

Closing this section, we may illustrate our comments made in Section 

8.1 on how the present concept of the barrier relates to the Isaacs' type 

barrier obtained for a single objective (collision with a target) game via 

necessary conditions optimizing the cost, in particular the time of colli

sion, see our Section 5.2 on optimal controllability. The following 

Example 8.4.4 establishes the barrier in the widely known homicidal 

chauffeur game discussed in detail by Isaacs [IJ. He did not use the 

Liapunov formalism. 

EXAMPLE 8.4.4. The action takes place in the plane. The pursuer 1 moves 

at a fixed speed V 1 but with his radius of curvature controlled up to a 

given quantity R. The evader 2 moves with fixed speed V 2 < VI and 

controls his direction of travel time instantaneously without the restric

tion of following along a smooth path. Collision occurs when the distance 

between the players is below or equal to a given quantity £. Clearly, if 

R is large enough, £ small and VI not greatly exceeding v 2 the evader 

can always escape by persistent sidestepping. The problem is to find 

precise conditions, values of R,£, (V 1/V 2 ) which demarcate this possibility. 

As always before, we take the state variables relative to the pursuer 

1, thus located at the origin (0,0), with the position of the evader 

( ) fl d h . d h T 2 2 < n 2 . E = Xl 'X 2 re ecte anyw ere outs]' e t e target : Xl +X2 _]'v The 

x 2-axis is always to be in the direction of VI ' see Fig. 8.16. 

Denote the current center of curvature for the pursuer by 

C = (R/u 1 , 0) , and its distance from the evader by d. Then the pursuer 

rotation about C is equivalent to a rotation of (x l 'X 2 ) about C in the 

opposite direction with the same angular speed. Thus (x l ,x2) moves with 

speed VI (dul/R) in a direction perpendicular to CE. Its velocity com

ponents are obtained by multiplying the speed by -x 2/d and (xl -R/Ul)/d 

Thus the dynamics are 

) (8.4.33) 

401 



www.manaraa.com

wi th 1 u 21 ,,; 1. Let 0'. V I/V 2 , the ratio of speeds. Then (8.4.33) 

becomes 

V 2 (sin u l 

V 2 (cos u 2 

I 
OX2 u /R) , 

0'. + OX I U l/R) 1 (8.4.34) 

To construct a suitable test function V(X I ,x2 ) according to the method 

of the first integral, we take 

{ 
1 , 

-1 

This yields the auxiliary integrable system: 

(8.4.35) 

with 

which upon integration provides us with the test function 

(8.4.36) 

The first term in the square bracket represents the distance between 

players, the second the relative surplus of speed. The function (8.4.36) 

consists of two Cl-branches 

VI (X I 'X 2 ) V2[2~ 2 2 
- (0'. -l)X I] (Xl +X 2 ) 

V 2 (Xl ,X 2 ) V2[2~ (X~ + X~) + (O'.-l)X I] 1 
(8.4.37) 

Fig. B.16 
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Fig. 8.17 

It gives rise to a topographical reference system V(Xl,x Z) const on 

]Rz displayed in Fig. 8.17. Also, V is positive definite on ]Rz. Our 

first interest lies in the half plane {(xl ,Xz) I Xz 2 O}, since the 

velocity vector of the car is always directed along the positive xz-axis. 

As the situation is totally symmetric about the xz-axis, we need consider 

only the quadrant {(xl ,Xz) Xl > 0, Xz > O} • 

dV 
dX z 

O'X z 
R 

Now, 

Substitution of these into -1 -z L(x,t,u ,u ) gives the Liapunov derivative 

Player 1 selects u! = 1, which gives him the greatest minimizing effect. 

Player 2 wishes to maximize L: 

dL z z dU z = [ax l +R(a-l)] cosu - ax z sinu 

so the maximizing u Z satisfies 

tan u~ 
O'X I +R(a-l) 

Setting X = aX l +R(a -1) , y = ax z we find 

(8.4.38) 

Call this quantity L* In order that we can deduce the motion of solutions 

of (8.4.34) relative to the V-levels, we must know which regions satisfy 

L* > 0 and L* < 0 . Accordingly we locate the curve L* = 0 . From 

(8.4.38) , 
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or 

That is, 

Y = X/(2'/a.(a. -1» 

Returning to the original formulation, we have 

2V'a.(a.-l) 
+ 

Rv'CY:=l 
2a.1ci 

We now' locate the curve xl 

or 

o. This is equivalent to 

in the abbreviated notation, so we have 

or 

This quadratic: in y2 has the solution 

y = A (X'/4R2 +X2 - X2)~ 

valid in the domain of our interest. 

(8.4.39) 

(8.4.40) 

(8.4.41) 

At this point, we examine the asymptotic behavior of (8.4.41) as X 

becomes large: Consider f (t) = (a + t)!:i. Expanding this formally into a 

Taylor Series about t = 0 we have 

f(t) a l / 2 + .!.ta-I/2 _ I t 2 -3/2 3 I I t 3 -5/2 
2 "42T a +z·z·Z·3T a 

+ (terms involving higher powers of a-I) . 

Let X2 = a and t = 4R2. Then we have 

for suitably large values of X. Using this in (2.3.38) gives 

or as X ..... 00, y ..... R. So in terms of (x l ,x2), Xl ..... 00 implies 

x 2 ..... R/a. • 
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Fig. 8.18 

Of further interest is the point at which the curve xl 

the x 2-axis. That is, X = R(a -1) , so (8.4.41) becomes 

or 

R~ [/4+ (a-l)2 - (a-l)J~ • 
al2 

o intersects 

The corresponding intersection point of the curve L* 

is 

o with the x 2 -axis 

(R.;a:J:") /2avU 

As the curve Xl = 0 is bounded at xl = 00 (by R), this means there is an 

intersection of these two curves in the first quadrant. This is displayed 

in Fig. 8.18. 
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representing vector, 68 
uniformly bounded, 149 

path, 
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Penetration, 217 
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Pick-and-place robot, 374 
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energy, 35,88,89,91 
energy cup, 170 
energy surface, 91 
game, 227 
push-off, 296 

Pontriagin, min-max principle, 232 
Power, 68,107 

accumulation, 107 
balance, 110 
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damping, 107 
input, 107 
limited, 109 
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Real-time 
avoidance, 291,312 
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Relative 
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Robotic system, 346 

Safety zone, 289 
Safety zone method, 289 
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Selecting equation, 82 
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Semi-games, 376 
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Semi-neutral set, 386 
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Sequential reaching, 254,259 
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Cartesian avoidance, 50 
neutral, 386 
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Set(s) (continued) 
reachable, 83,371 
semi-neutral, 386 

Singular points, 72 
Singular trajectory, 72 
Space, 1 

configuration, 12,20,40 
of events, 76 
phase, 4,53,67 
product, method of, 337 
state, 4,67 
work, 49,51 

Stability, 121,133,134 
asymptotic, 121,134,137 

quasi, 134 
region, 121,134 
uniform, 121,122,134,137 

Dirichlet, 92,93,99,120 
equi, 121 
Liapunov, 121,162 
uniform, 121,137 

asymptotic, 121,137 
unstable, 133,134,143 

equilibrium, 94,99,120,198,202 
Stabilization, 133,151 

active control, 271,332 
asymptotic, 137,142 

region of, 137 
practical, 149 
region of, 149 
stabilizable system, 137,138,139 
strong, 138,151,156,175,230 
strong, for level, 151 
under given level, 153,156 

State, 67,79 
coordinates, 13,67,68 
relative, vector, 77 
space, 11,13,67 
pattern, 170 
vector, 13,67,68,70 

System, 11,17 
autonomous, 70,170,202 
conservative, 91 
dissipative, 114 
multiple mechanical, 203 
nonautonomous, 70,209 
passive, 193 
reference, 163 
stabilizable, 133,151 

Target, 49 
capture sub, 223 
Cartesian, 50,51 
configuration, 51,52 
in-the-large, 148 
path, 330 
sequential, 254,259 
velocity, 49,52,53 
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Tracking, 
adaptive, 323,336,340,355,359,361 
model, 336,340,350,359,361 
path, 214,323,328 

Trajectory, 6,71,72,83 
minimal invariant, 135,171 
steady state, 70,170,174 

Ultimate avoidance, 291,292,311 
Ultimate collision, 217 
Ultimate strong collision, 217 
Uncertain 

parameter, 80 

Uncertain (continued) 
system, 79,86,87 

Unmodelled dynamics, 23 

Variable structure systems (VSS), 
335 

Winning 
program, 127,226,256,396 
region, 377,383,388 

Work done, 35,44,110 
Work region, envelope, 49,51 

Cartesian, 49 
Worst case design, 80,82 
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